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1
- Do you see anything?
Looking up he replied,
- I see people looking like trees and walking.

Mark 8:23–24

1
Introduction

Seeing is essential for human beings. Seeing, or lightperceiving ability in gen-
eral, is essential for most living forms. Because light is a rich source of energy and
environmental information, perceiving light is advantageous for seeking favorable

conditions (like food, shelter, mates, etc.), avoiding dangers, and subsequently crucial for
survival and reproduction [1]. Thus evolution necessitates that most living organisms de-
velop some form of light perception, from the simplest photo-pigment molecules in the
primitive prokaryote bateria [2], and light-sensing cells in multi-cellular leeches, to plant
phototropism [3], and visual systems of humans and animals; or even those living under
low-light environments like deep-sea fish [4] and bats [5]; etc. Vision has become a princi-
pal sensory modality for 7 of the 36 main phyla, accounting for 96% of animal species [6],
and eyes with resolving power, now exist in 10 fundamental variations [7].

Different from the primitive cells in simple organisms, which only allow recognizing
light and shades, animals and especially humans’ visual systems allow more sophisticated
interpretations. Although an eye and a cameramay share some particular traits, seeing, un-
like photography, does not mean merely receiving light into eyes’ photo-receptors. For hu-
mans, seeing, or, in its fullest sense visual perception, includes extracting information from
objects’ emitted light and acquiring knowledge about the environments [1]. An example
is theman in the epigraph, who lookswith recovering eyes and, thanks to the perceivedmo-
tion, can differentiate humans from trees despite the similar perception. In other words,
vision is a cognitive process for understanding the environment via optical information.
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1. INTRODUCTION

1.1 Optical Information

To study human visual perception, Marr’s computational approach [8] has been an inspi-
ration for different disciplines such as physiology, psychology and computer science. The
approach starts with projected images on eyes’ retinae and works backward to findmodels
best describing the scenes’ properties. Among the factors, light photometry and scene ge-
ometry are the main impacts on retinal images, and subsequently the scene perception [9].

Photometry We see things because there is light coming from object surfaces into
our eyes. We see colors as a result of the brains’ interpretation of light wavelengths. Not all
objects emit light, yet they reflect, absorb, and/or transmit light. Properties of light change
after interactingwith object surfaces before entering into the eyes, inducing the perception
of textures and materials. Red textures do not absorb red wavelengths, allowing them to
travel to the eyes; matte surfaces reflect light equally in all directions; and transparent ob-
jects transmit light and bend its path; etc. In reality, light that comes to our eyes from a
certain object is a combination of light from a primary source (e.g. the sun, or lamps) and
light interacting with other objects. Thus, photometric information carries information
about objects’ properties. In computer vision and graphics, the light and surface interac-
tions can be generally modelled by the bidirectional scattering distribution function [10],
or in simpler forms such as the Lambertian and dichromatic reflection model [11, 12].

Geometry At the heart of retinal image formation is projective geometry. Light re-
flected from the 3Dworld, passing through the eye pupil and lens forms a 2Dupside-down
image on the retina (Figure 1.1a). Closer objects create larger images, and farther smaller.
The similar mechanism has been applied in creating the camera (Figure 1.1b) and the pin-
hole cameramodel (Figure 1.1c), which forms the basis of several applications in computer
graphics and vision.

Since retinal images are two-dimensional, depth information is lost after perspective pro-
jection. Humans perceive depth via the stereopsis process of the two eyes. The projected
images on the retinae are close but not exactly the same due to binocular disparity of the
eyes. The same point on an environmental object is thus projected on the retinae at two
different locations, whose displacement depends on the distance of the objects to the eyes.
Images of points that have near-zero disparity end up at very close places in the retinae of
the two eyes and get fused as single images, whereas images with large disparity end up fur-
ther away, creating the depth perception. Finding correspondences between two retinal
images are effortless for humans, yet still an open problem in computer vision [1].

2
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1.2. CROSS-MODALITY PERCEPTION

(c)(b)(a)
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lens
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film
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lens

film
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Figure 1.1: Image formation in an eye (a) compared to a camera with lens (b) and pinhole camera (c)

1.2 Cross-Modality Perception

Photometric and geometric information explain the formation of retinal images and how
they induce color and distance perceptions. They are the basis from which other scene’s
aspects, such as motion, shape, and object identities are perceived [1].

Motion Motion perceptibility arises from depth perception, as motion is the dis-
placement of objects over time. Although all that our brains have access are tiny changes
of 2D retinal images, we can recognize a car’s speed in real-world units, and understand its
3D direction. Humans perceive motion by integrating visual information over space and
time: as multiple retinal images are treated as a single coherent description, we can perceive
the same object when its retinal images become larger or smaller, inducing the notion of
the object moving toward or away [9].

Reversely, motion also creates depth perception. Motion parallax, the difference be-
tweenpairs of the samepointswhen an objectmoves, is similar to binocular disparity. How
fast an object moves indicates how far it is: e.g. airplanes on runways seem to move much
faster than when they are in the sky. Computationally, if velocity and direction are known,
motion parallax can provide absolute depth [13].

Motion perception is also induced by photometric information, such as color and con-
trast. An array of light flashing one-by-one appears to be moving, although none of the
lights actually move; we see people and objects moving in movies, yet they are only static
images displayed at a high-speed frame-rate. The illusory motion of stationary objects is
called apparent motion. On the other hand, we tend to look for occlusions and texture
boundaries to determine amoving object. Low-contrast between objects and backgrounds
might pose difficulty in perceiving their motion.

Shape Similar to motion, the perception of object shape and surface orientation
comes from both photometric and geometric cues. Although object shape is often at-
tributed to a 3D representation of the entire object [1], we adopt the term to indicate both
the global shape and the local structure such as the visible surface orientation.

3
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Figure 1.2: Michelangelo’s Pietà and David: object geometrical structures can be depicted in white
marble statues by shading.

Photometrically, scene structures and object shapes can be depicted from shading and
cast shadows. Objects’ shadings are due to the variations of reflected light off a surface,
resulting from the changes of the objects’ geometry, while cast shadows provide relative
distance between different objects. This is the reason why we can appreciate white marble
statues. As shown in Figure 1.2, despite the single color, the objects’ details and structures
are still manifested clearly from the shading patterns.

Geometrically, as depth is perceived, objects’ shapes can be perceived [14]. Objects’
shapes are often indicated by their physical boundaries formed by the spatial discontinu-
ity between the objects and the environments, i.e. depth edges, whereas inner structures
are exhibited by the change in distance and the surface discontinuity, i.e. orientation edges.

Computationally, the rate of changeof surfacedepth is defined as surfacenormals, which
can be estimated as the gradient of depth images. The depth images can be computed from
various sources, called shape-from-X, such as shading, textures, motions, etc. [1]

Object recognition Compared to color, depth and motion, perception of object
shapes is of a higher level and provides more useful information. In that sense, object
recognition is one of the highest levels of perception, as it provides the functionality and
usefulness of the environmental objects. Most of perceptual theorists agree that object
recognition is the intermediate step toward functionality perception [1]. In fact, the ul-
timate goal of the visual evolution is that humans and animals are able to choose useful
objects and avoid dangerous situations.

Humans recognize by first perceiving, then connecting various intrinsic properties of ob-
jects and scenes, among which shapes are the most informative, while color, depth, and

4
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motion are the essentials [9]. A toddler learning of the world usually grabs and tosses a
toy around, then observes how it behaves in motion. The colors, shapes and the move-
ment help identify the toy, and he can recognize it the next time it comes into sight even
before knowing its name and able to speak. Adults are more skillful in recognizing objects
and scenes. We look for spilt water on a textured table by tilting and finding where light
reflects. Soldiers and hunters use motion cues to identify camouflaged enemies and preys
from similar-looking regions. The visual impaired person in the epigraph could have taken
humans for trees, if it was not for their walking. Multimodal involvement appears more
critical when it comes to complicated tasks like playing sports under weather effects, where
recognizing objects, tracking their location and speed, estimatingwinds and avoidingdirect
sunlight in the eyes, etc. need to be integrated in planning and action.

1.3 Context of the Thesis

Multimodal interaction has been recognized important by computer vision researchers.
Malik et al. [15] regards vision as a unifying framework of three processes, namely recog-
nition, reconstruction, and reorganization. Multinet [16] and Ubernet [17] propose to
learn a universal image representation to tackle multiple vision tasks at once. Interests in
multimodality also lead tomultimodal datasets [18, 19, 20] being proposed, which, despite
being computer-generated imagery, have proven beneficial for training multimodal deep
neural networks.

In the context of robotic development, multimodality is especially important for the
robot to cope with dynamic surroundings. The research of this thesis is carried in the
context of the TrimBot2020 project*, which studies and develops technologies for an au-
tonomous hedge trimmer. With the aim to operate in an outdoor unstructured environ-
ment of a garden, the trimmer should be able to identify drivable regions from various
terrains and landscapes while avoiding obstacles, recognizing a target bush from similar-
looking rose plants or trees, navigating among the objects and position itself at a proper
location with respect to a target, as well as assessing the current and reference shape of the
bush before starting to trim.

The whole operation requires high understanding of objects and awareness of the envi-
ronment, thus invoking the usage of divergent vision modalities. The proposed technolo-
gies and algorithms span and connect different tasks in computer vision, such as stereo
matching using depth andmotion [21], semantic-based visual localization [22] and odom-

*http://trimbot2020.webhosting.rug.nl/
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etry [23], jointly predicting camera poses and depth [24], as well as intrinsic image decom-
position and semantic segmentation [25], etc.

Particularly, theoutdoor garden context ofTrimBot2020 is notable for intricate attributes.
Outdoor lighting is a well-known challenge in computer vision for interfering effects such
as color variations, specularities, backlighting, cast-shadows, etc. Garden scenes are gener-
ally different from the popular outdoor driving scenarios, as the scenes are unstructured
with deformable and similar-looking objects (bushes, grassymounds, plants, etc.). As such,
besidesmultimodal algorithms, amultimodal large-scale dataset featuring unstructuredna-
ture scenes with dedicated semantic labels is desired as generic or popular driving datasets
would become inadequate. Within this context, the next section will provide in detail the
scope and research questions of the thesis.

1.4 Outline and ResearchQuestions

Human vision primarily comes from visual stimuli, i.e. retinal images, captured by our vi-
sual receptorswhenwe receive light into our eyes. In computer vision and robotics, sensory
stimuli, or information obtained from sensors, are often referred to as sensory modalities,
or simply modalities [26]. Different from human vision, where most of the visual per-
ceptions, such as depth, motion, shape, etc. are the results of cognitive inference and only
appear in our consciousness, artificial cognitive systems have definite representations for
such data. In this thesis, we adopt a notion ofmodality that includes both sensory data, e.g.
RGB and depth images, and their interpretations which cannot be captured by sensors, e.g.
intrinsic images, surface normals, optical flow, point clouds, etc.

The thesis contributions are centered around the main research question:

How can various computer vision modalities be exploited and combined?

In studyingmultimodal approach, the reverse approach is to try decomposing a primary
modality. Photometric information carries not only the color properties of environmen-
tal objects, but also geometric information such as surface structures and orientation. In
Chapter 2, we study the following question:

How can images be decomposed into different photometric intrinsic components such as
reflectance (texture colors) and shading (geometrical structures and lighting)?

We observe that traditional approaches relying on well-established physical models have
achieved high qualitative results [27, 28, 29, 30, 31], while contemporary data-driven deep

6
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learning approaches are quantitatively superior. In the chapter, we review the dichromatic
reflection model [11], and introduce the image formation loss based on the model to steer
the training process of a deep network. The principles of the long-researched Retinex
method [31] is then employed to obtain intrinsic image gradient and improve the decom-
position quality.

Optical flow, surface normals, and semantics are subsequent perceptions from retinal
images. They depict different scene qualities, yet together they bring complementary cues
for better scene understanding. InChapter 3, we study the impact of eachmodality on the
others and their efficiency when used in combination. The governing question is that

How do the subsequent modalities such as optical flow, object semantics, and surface
normals complement and impact one another?

We employ amodular approach that separates the subsequentmodalities from the primary
RGB images to study their interactions. To that end, a deep network, pre-trained onRGB
images for each modality, is refined with various combinations of optical flow, semantics,
and surface normals to enforce joint features. The refined networks are tested on different
scene types, structured and unstructured, to explore the combinatorial impacts.

There hardly exist any large-scale datasets with dense optical flow of non-rigid motion
with real-world imagery as of today. The reason lies mainly in the difficulty of human
annotation to generate optical flow ground truth. To circumvent the need for human an-
notation, in Chapter 4, we propose a framework using object segments to automatically
generate optical flow from real-world videos. Chapter 4 attempts to answer the question:

How can object segments be used to generate non-rigid optical flow from real-world movies?

Object segments signify the extension of an object in a scene. By focusing on individual
objects and their correspondences in each video frame, the object’s motion patterns are
extracted and used as constraints for motion generation. We show that dense optical flow
fields, although synthetically generated, retain the objects’ appearances and useful for pre-
training deep neural networks for optical flow prediction.

Surface geometry defines objects’ shapes and the interaction with light, hence impacts
their appearances. InChapter 5, we study the use of objects’ 3D point clouds for the novel-
view synthesis problem. The following question is posed for the chapter:

How does geometric and photometric information from a single view help predict the other
views of an object?

7
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We observe that object’s geometry provides the basis to obtain a coarse novel view in a
straightforward manner. From a partial point cloud constructed by monocular depth es-
timation, the pixels in the current view can be re-located or removed depending on their
visibility in the target view using point cloud transformation and projection. The coarse-
view completion process used to obtain the final dense view, and self-supervised training
of monocular depth prediction can be formulated as backward and forward warping of
input and target view, thus can be employed in an end-to-end system. The benefit of using
point clouds as an explicit 3D shape for novel view synthesis is experimentally validated on
the 3D ShapeNet benchmark.

Multimodal large-scale datasets for outdoor scenes aremostly designed for driving prob-
lems. The common urban scenes are highly structured and semantically different from
scenarios seen in nature-centered scenes such as gardens or parks. To accommodate ma-
chine learning applications for nature-oriented scenes, in Chapter 6, we seek to address the
following question:

How can a large scale dataset with multiple modalities help for unstructured outdoor scenes
understanding?

We propose a synthetic dataset of Enclosed garDEN scenes (EDEN) containing more
than 300K images captured frommore than 100 gardenmodels. The use of virtual garden
models allows annotated data for various low- and high-level computer vision tasks, includ-
ing semantic segmentation, depth, surface normal, intrinsic images, and optical flow. The
dataset is used to benchmark computer vision state-of-the-art methods and show compet-
itive results on the dataset.

1.5 Origins

This thesis is based on the following publications, in which all authors contributed to the
writing process. The detailed contributions are presented following each paper:

Chapter 2 Anil S. Baslamisli,Hoàng-Ân Lê, Theo Gevers, “CNN based Learning us-
ing Reflection and Retinex Models for Intrinsic Image Decomposition”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
Anil S. Baslamisli Analysis, methodology, implementation, and experiments

Hoàng-Ân Lê Analysis, data generation, and experiments
Theo Gevers Supervision, idea, and insight

8
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Chapter 3 Hoàng-Ân Lê, Anil S. Baslamisli, Thomas Mensink, Theo Gevers, “Three
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2
Physics-based Deep Architectures for

Intrinsic Image Decomposition

Traditional work on intrinsic image decompositionrelyingonphysical
characteristics produce high qualitative images, while deep-learning-based mod-
els dominate quantitative results. In this chapter, we propose a deep-learning-

empoweredmethod steered by the physics-based reflectionmodels, thus achieving the best
of the two worlds. The network architecture, coined RetiNet, exploits reflectance and
shading gradients to obtain intrinsic images as inspired by the well-established Retinex
model. The proposed approach allows for the integration of all intrinsic components. To
train the newmodel, an object centered large-scale datasets with intrinsic ground-truth im-
ages are created. The experimental evaluations show that the new model outperforms ex-
isting methods. Visual inspection shows that the image formation loss function augments
color reproduction and the use of gradient information produces sharper edges.

2.1 Introduction

Intrinsic image decomposition is the process of separating an image into its formation com-
ponents such as reflectance (albedo) and shading (illumination) [27]. Reflectance is the
color of the object, invariant to camera viewpoint and illumination conditions, whereas
shading, dependent on camera viewpoint and object geometry, consists of different illu-
mination effects, such as shadows, shading and inter-reflections. Using intrinsic images,
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instead of the original images, can be beneficial for many computer vision algorithms. For
instance, for shape-from-shading algorithms, the shading images contain important visual
cues to recover geometry, while for segmentation and detection algorithms, reflectance im-
ages canbebeneficial as they are independent of confounding illumination effects. Further-
more, intrinsic images are used in awide range of computational photography applications,
such as material recoloring [32, 33], relighting [34, 35], and retexturing [36, 37].

Most of the pioneering work on intrinsic image decomposition, such as [27, 28, 29, 30],
rely on deriving priors about scene characteristics to understand the physical interactions
of objects and lighting in a scene. In general, an optimization approach is taken imposing
constraints on reflectance and shading intrinsics for a pixel-wise decomposition. [31] in-
troduces the well-known Retinex algorithm which is based on the assumption that larger
gradients in an image usually correspond to reflectance changes, whereas smaller gradients
are more likely to correspond to illumination changes. In addition to the traditional work,
more recent research focuses on using deep learningmodels [38, 39]. However, these deep
learning-based methods do not consider the well-established, traditional image formation
process as the basis of their intrinsic learning process. Deep learning is used as in-and-out
black box, which may lead to inadequate or restricted results. Furthermore, the contribu-
tion and physical interpretation of what the network learned is often difficult to interpret.
As a consequence, although current deep learning approaches show superior performance
when considering quantitative benchmark results, traditional approaches are still domi-
nant in achieving high qualitative results. Therefore, the goal of this chapter is to exploit
the best of the two worlds. A method is proposed that (1) is empowered by deep learning
capabilities, (2) considers a physics-based reflectionmodel to steer the learning process, and
(3) exploits the traditional approach to obtain intrinsic images by exploiting reflectance and
shading gradient information.

To this end, a physics-based convolutional neural network (CNN), IntrinsicNet, is pro-
posed first. A standard CNN architecture is chosen to exploit the dichromatic reflection
model [11] as a standard reflection model to steer the training process by introducing a
physics-based loss function called the image formation loss, which takes into account the
reconstructed image of the predicted reflectance and shading images. The goal is to ana-
lyze the contribution of exploiting the image formation process as a constraining factor in
a standard CNN architecture for intrinsic image decomposition. Then, we propose the
RetiNet, which is a two-stage Retinex-inspired convolutional neural network which first
learns to decompose (color) image gradients into intrinsic image gradients i.e. reflectance
and shading gradients. Then, these intrinsic gradients are used to learn the CNN to de-
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compose, at the pixel, the full image into its corresponding reflectance and shading images.
The availability of annotated large-scale datasets is key to the success of supervised deep

learning methods. However, the largest publicly available dataset with intrinsic image
ground-truthhas around a thousandof redundant images taken fromananimated cartoon-
like short film [40]. Therefore, to train our CNN’s, we introduce a large-scale dataset with
intrinsic ground-truth images: a synthetic dataset with man-made objects. The dataset
consists of around 20,000 images. Rendered with different environment maps and view-
points, the dataset provides a variety of possible images in indoor and outdoor scenes.

In summary, our contributions are: (1) a standard CNN architecture IntrinsicNet in-
corporating the image formation loss derived by a physics-based reflectionmodel, (2) a new
two-stage Retinex-inspired convolutional neural networkRetiNet exploiting intrinsic gra-
dients for image decomposition at the pixel, (3) gradient (re)integration (inverse problem)
where images are integrated based on intrinsic gradients by a set of simple convolutions
rather than complex computations (e.g. Poisson), and (4) a large-scale synthetic object-
centered dataset with intrinsic ground-truth images.

2.2 RelatedWork

As intrinsic image decomposition is an ill-posed problem [41, 42], an important line of re-
search is to study scene characteristics and derive priors for reflectance and shading. An op-
timization procedure is used to enforce imaging constraints for pixel-wise decomposition.
Oneof the earliest andmost successfulmethods is theRetinex algorithm [31]. Retinex con-
siders that the reflectance image is piece-wise constant and that the shading image varies
smoothly. The algorithm assumes that larger derivatives in an image correspond to re-
flectance changes, and that the smaller ones correspond to illumination changes. This ap-
proach is extended to color images [43] by exploiting the chromaticity information, which
is invariant to shading cues. Since then, most of the (traditional) related work continued
to focus on understanding the physical interactions, geometries of the objects, and lighting
cues by inferring priors. Priors that are used to constrain the inference problem are based
on texture cues [44, 45], sparsity of reflectance [41, 42], user in the loop [36, 46], and depth
cues [28, 47, 48]. Othermethods usemultiple images [30, 49, 50], where reflectance is con-
sidered as the constant factor and illumination the changing one. These methods produce
promising results as they disambiguate the decomposition. However, their applicability is
limited by the use of priors.

Supervised Deep Learning Deep convolutional neural networks are very success-
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ful for various computer vision tasks, such as image classification [51] and object detec-
tion [52]. The success of supervised deep learning depends on the availability of annotated
large-scale datasets [53, 54]. The data collection is expensive for pixel-wise annotation and
more challenging for low-level such as optical flow, surface normal, intrinsic image decom-
position, etc. For such tasks, synthetic data have proven to produce competitive perfor-
mance [55, 19]. Real-world data collection for ground-truth intrinsic images is only possi-
ble in controlled laboratory settings, which require excessive effort and time. As a results,
the only existing real-world imagery dataset,the MIT intrinsic benchmark [56], contains
as few as 20 object-centered images.

For supervised learning, intrinsic image researchers mostly rely on synthetic datasets.
The MPI-Sintel dataset [40] provides a scene-level 3D animated cartoon-like short film
with intrinsic image ground-truths. Although the dataset has only around a thousand im-
ages, [38, 57] show that the synthetic images and ground-truth are useful for training deep
networks. The large-scale synthetic dataset of non-Lambertian objects [58] achieves the
state-of-the-art results by training an encoder-decoder CNN. Their dataset has yet been
published. Relative reflectance comparison of point pairs are proposed to obtain intrinsic
color for real-world indoor scenes by crowd-sourcing [59]. The dataset does not provide
ground-truth intrinsic images, yet it is shown to be effective in learning priors and relation-
ships in a data-driven manner [60, 61, 62].

Supervised deep learning, trained on large scale datasets, achieves state-of-the-art results
on different benchmarks. However, they ignore physics-based characteristics of the intrin-
sic image formation process. Traditional methods rely on reflection models, yet do not
exploit the learning power of CNNs. [38] argues that the learning model should consider
both patch level information and the overall gist of the scene, while [58] assumes that the
intrinsic components are highly correlated. The training data of such methods are gener-
ated in a physics-basedmanner, including a specular component, yet they do not explicitly
embed a physics-based image formation loss. Another recent work [57] uses an image for-
mation component in their unary term for CRF (for the optimization process, not in the
learning process itself), but their training data (Sintel) was not created in a physics-based
manner. Nonetheless, none of proposed deep learningmethods consider the image forma-
tion process for consistent decomposition during training, nor a Retinex driven gradient
separation approach [29, 41, 44, 56, 63, 64]. AsRetinex has a solid background in intrinsic
image decomposition, this chapter seeks to combine the best of the twoworlds: supervised
deep learning based on reflection and Retinex models.
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2.3 Reflection-model-based Architectures

In this section, we first describe the image formation model. Then, the IntrinsicNet archi-
tecture, an encoder-decoder CNN based on the reflection model is presented with the im-
age formation loss. Finally,wepropose aRetinex-inspirednewCNNarchitecture,RetiNet,
which exploits image gradients in combination with the image formation loss.

2.3.1 Image FormationModel

The dichromatic reflection model [11] describes a surface as a composition of the body Ib
(diffuse) and specular Is (interface) reflectance:

I = Ib + Is. (2.1)

Then, the pixel value, measured over the visible spectrum ω, is expressed by:

I = mb (n, s)
∫

ω
fc (λ) e (λ) ρb (λ) dλ +ms (n, s, v)

∫

ω
fc(λ)e(λ) ρs(λ)dλ, (2.2)

where n is the surface normal, s is the light source direction, v is the viewing direction,m is
a function of the geometric dependencies, λ is the wavelength, fc(λ) is the camera spectral
sensitivity, e(λ) defines the spectral power distribution of the illuminant, ρb characterizes
the diffuse surface reflectance, and ρs is the specular reflectance with Fresnel reflection. As-
suming a linear sensor response andnarrowbandfilters (λI), Equation2.2 canbe re-written
as follows:

I = mb (n, s) e (λI) ρb (λI) +ms (n, s, v) e (λI) ρs (λI) . (2.3)

The decomposition of an observed image I (x) at a positionx canbe approximated from
the component intrinsic images. Under the assumption of body (diffuse) reflection, Equa-
tion 2.3 can be re-written as the pixel-wise products of its reflectance R(x) and shading
S(x) images for different light source models e(λI) as follows:

I(x) =




R(x) S(x), for single canonical light source (2.4)

R(x) S(x) E(x), for single non-canonical light source (2.5)

R(x) S(x) E, for global non-canonical light source (2.6)
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Convolution Convolution+ Stride Upsampling Concatenation Dropout

Input

Reflectance

Shading

ConvolutionBatchNorm+ReLU

Figure 2.1: IntrinsicNet model architecture with one shared encoder and two separate decoders: one for
shading and one for reflectance prediction. Encoder part contains both shading and reflectance characteris-
tics. The decoder parts aim to disentangle those features.

where E(x) describes the color of the light source at position x. Equation 2.4–2.6 are ex-
tended to non-diffuse reflection by adding the specular (surface) termH(x) as follows:

I(x) =




R(x) S(x) +H(x), for local canonical light sources (2.7)

R(x) S(x) E(x) +H(x) E(x), for local non-canonical light sources (2.8)

R(x) S(x) E+H(x) E, for global non-canonical light sources (2.9)

In the next section, the reflection model is considered to introduce different image for-
mation losses within an encoder-decoder CNNmodel for intrinsic image decomposition.

2.3.2 IntrinsicNet

In this section, a physics-based deep learning network, IntrinsicNet, is proposed. We use
a standard CNN architecture to constrain the training process by introducing a physics-
based loss and verify the benefit of constraining CNNs with the reflection model. An ar-
chitecture is adopted with one shared encoder and two separate decoders, one for shading
and the other for reflectance prediction. The features learned by the encoder contain both
shading and reflectance cues which are disentangled by the decoder. Figure 2.1 illustrates
ourmodel. The architecture can be extended to considermore formation factors (e.g. light
source or highlights) by adding the corresponding decoders.

To train the model, we use the standard L2 reconstruction loss. Let Ĵ be the ground-
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truth intrinsic image and J be the prediction of the network. Then, the reconstruction loss
LRL is given by:

LRL

(
J, Ĵ

)
=

1
n
∑
x,c

∥∥∥ Ĵ− J
∥∥∥
2

2
, (2.10)

where x denotes the image pixel, c the channel index and n is the total number of evaluated
pixels. In our case, the final, combined loss LCL is composed of 2 distinct loss functions,
one for reflectance reconstructionLRLR and one for shading reconstructionLRLS :

LCL

(
R, R̂, S, Ŝ

)
= γR LRLR

(
R, R̂

)
+ γS LRLS

(
S, Ŝ

)
, (2.11)

where the γs are the corresponding weights. In general, this type of network may generate
color artifacts and blurry reflectance maps [39, 21]. The goal of the image formation loss
is to increase the color reproduction quality because of the physics constraint.

More precisely, the image formation lossLIMF takes into account the reconstructed im-
age of the predicted reflectance and shading images. That is in addition to theRGB input
image. Hence, this loss imposes the reflection model constraint of Equation 2.4:

LIMF (R, S, I) = γIMF LRLIMF ((R× S) , I ) (2.12)

where I is the input image. Thus, the final loss of the IntrinsicNet becomes:

LFL

(
I, R, R̂, S, Ŝ

)
= LCL

(
R, R̂, S, Ŝ

)
+ LIMF (R, S, I) . (2.13)

Note that the image formation loss is not limited to Equation 2.4. Any intrinsic image
Equation 2.4–2.9 can be used depending on the intrinsic problem at hand. For example,
the loss function for the full reflection modelLFRM is as follows:

LFRM(∗) =γR LRLR

(
R, R̂

)
+ γS LRLS

(
S, Ŝ

)
+ γH LRLH

(
H, Ĥ

)
+ γE LRLE

(
E, Ê

)

+ γIMF LRLIMF ((R× S× E+H× E) , I) .
(2.14)

The image formation loss function is designed to augment the color reproduction. To
augmentboth color reproduction and edge sharpness, in thenext section, a two-stageRetinex-
inspired CNN architecture is described which uses intrinsic gradients (for edge sharpness)
and the image formation loss (for color reproduction).
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Shading
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Figure 2.2: RetiNet model architecture ( layer types and sub-network details as in Figure 2.1). Instead of
generating intrinsic image pixel values, the encoder-decoder network is trained to separate (color) image gra-
dients into intrinsic image gradients. Then, for gradient re-integration part, the input image is concatenated
with predicted intrinsic gradients and forwarded to a fully convolutional sub-network to perform the actual
pixel-wise intrinsic image decomposition.

2.3.3 RetiNet

In this section, we employ the principles of the well-established Retinex model to steer
the CNN for intrinsic image decomposition. To that end, the 2-stage RetiNet model is
proposed, which combines gradient information with the image formation loss.

In the first stage, the IntrinsicNet architecture is employed to separate color-image gra-
dient into intrinsic-image gradients. The gradients∇f =

[
fx, fy

]
of an image f are approx-

imated by the channel-wise finite difference, where fx, fy are the horizontal and vertical
components, respectively. For the sake of simplicity, in RetiNet, the channel-wise gradi-
ent magnitudes ‖∇f‖ are used, where:

‖∇f‖ =
√

fx2 + fy2 (2.15)

To assist the network with image gradients, the input RGB image is concatenated to its
per-channel gradient magnitudes before being fed into the network, which results in a
6-channel input. The combined loss function in Equation 2.11 is used to enforce the
intrinsic-image gradients of the first stage, as follows:

LS1 = LCL

(
‖∇R‖ ,

∥∥∥∇R̂
∥∥∥ , ‖∇S‖ ,

∥∥∥∇Ŝ
∥∥∥
)
, (2.16)

For the second stage, the input image is concatenated with the predicted intrinsic gradi-
ents. The newly formed input is provided to a fully convolutional sub-network to perform
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Input Reflectance Shading Input Reflectance Shading Input Reflectance Shading

Figure 2.3: Overview of the synthetic dataset with input images and corresponding reflectance and
shading ground truths. Different environment maps are used to render the models for realistic appearance.

the actual decomposition by using Equation 2.13 with the intrinsic loss. Figure 2.2 illus-
trates our RetiNet model.

Our network differs considerably from the threshold-driven In contrast to threshold-
driven gradient separation, our network learns intrinsic gradients directly from the data
without using hard-coded thresholds. For re-integration, a series of simple convolutions
is proposed to separately compute the intrinsic images. This is different from other meth-
ods which try to find, by complex computations, the pseudo-inverse of an unconstrained
system of derivatives, or to solve the Poisson equation.

Despite the similarities to themodel of [65], ourmethod differs in several ways. Instead
of using edges, our model seeks to separate image gradient to different intrinsic compo-
nents, while their method predicts a single target component. In addition, re-integration
is done by a series of simple convolutions in our method, but while they use an encoder-
decoder based network with de-convolutions.

2.4 Experiments

2.4.1 Physics-based Synthetic Dataset

For our experiments, large scale datasets are needed to train the networks. Due to the un-
availability of the synthesis dataset [58], for fair comparison, we generate a similar dataset
following the paper description. We randomly sample around 20K 3D models obtained
from the ShapeNet dataset [39] for training. To increase variation and decouple the shape
and texture correlation, themodels’ textures are replaced by random colors. The rendering
is performed by the physics-based Blender Cycles*. The engine traces a light ray from each
pixel back to a light source to determine the pixel color. The process depends on the prop-
erties of surfaceswithwhich light rays interact following physically based reflectionmodels.

*https://www.blender.org/
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In the dataset, the objects’ materials aremodelled by a diffuse bidirectional scattering distri-
bution function (BSDF)with random roughness. Different environmentmaps are used to
simulate ambient light. The objects are rendered at random viewpoints sampled from the
upper hemisphere as conducted in [58]. To guarantee the relationship between reflectance
and shading, the Cycles rendering pipeline is modified to obtain the reflectance and shad-
ing maps corresponding to each rendered image. All images are in high-dynamic range
without gamma-correction. The generated dataset contains around 20K object-centered
images. An overview of the datasets is given in Figure 2.3.

2.4.2 ErrorMetrics

For evaluation, the commonmetrics are chosen, including the mean squared error (MSE),
the local mean squared error (LMSE), and the structural dissimilarity index (DSSIM) [47].
The image absolute brightness is adjusted tominimize the errors. Following [56], LMSE is
computed by aggregating theMSEs over k×k-size regions with steps of k/2 (k = 20), nor-
malized to [0, 1]. DSSIMmeasures the perceptual visual quality of the predicted images.

2.4.3 Implementation Details

For the encoder network, the VGG16 architecture [51] without fully-connected layers
is used. Moreover, for dimensionality reduction, the max-pooling layers are replaced by
convolutional layers with stride 2. In this way, our model learns its customized spatial
down-sampling and is fully convolutional. For the decoder network, the encoder part is
mirrored. The strided convolutional layers are inverted by a 4 × 4 deconvolution with
stride 2. We follow [66] and use skip-layer connections to pass image details to the top lay-
ers. The connections are linked between the convolutional layers before down-sampling of
encoder blocks, and the corresponding deconvolutional layers of the decoder part, except
between the last block of the encoder and the first block of the decoder. Moreover, batch
normalization [67] is applied after each convolutional layer, except for the last layer of the
decoders and the inference net of RetiNet (prediction results) to speed up the convergence
and to maintain the gradient flow. The inference net has convolution kernels of 3× 3 and
the layers have [64, 128, 128, 64] feature maps, respectively. Our models are implemented
using the stochastic gradient descent optimizer with learning rate of 10−5 andmomentum
of 0.9. A polynomial decay is applied to the learning rate to reach a final learning rate of
10−7. Convolution weights are initialized by using [68] with a weight decay of 0.0005,
whereas deconvolution weights are initialized randomly from a normal distribution with
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MSE LMSE DSSIM

Albedo Shading Albedo Shading Albedo Shading
∗WithoutLIMF 0.0045 0.0062 0.0309 0.0326 0.0940 0.0704
∗WithLIMF 0.0051 0.0029 0.0295 0.0157 0.0926 0.0441
+WithoutLIMF 0.0005 0.0007 0.0300 0.0498 0.0075 0.0082
+WithLIMF 0.0005 0.0007 0.0297 0.0505 0.0072 0.0084

Table 2.1: Evaluation results of the IntrinsicNet with and without image formation loss on the MIT
intrinsic benchmark (∗) and the ShapeNet test set (+). The image formation loss constrains the model to
obtain better DSSIM performance. At the same time, it outperforms other models considering the MSE and
LMSEmetrics on real world images.

mean of 0 and standard deviation of 1. Moreover, the input size is fixed to 120× 160 pixels
and the batch size is fixed at 16 for all experiments. Throughout all experiments, we ran-
domly flip, vertical or horizontal, and shift images by a random factor of [−20, 20] pixels
horizontally and vertically to generate additional training samples (data augmentation).

2.5 Evaluation

2.5.1 Image Formation Loss

Input IN(-) IN(+) GT

Figure 2.4: Close-ups of reflectance prediction
on images from theMIT intrinsic benchmark [56].
IN(+/-) denotes the IntrinsicNet with/without the
image formation loss. The image formation loss sup-
presses color artifacts and halo effects.

The image formation loss benefit is shown
in Figure 2.4 and Table 2.1. The results
show that the image formation loss bet-
ter constrains the model, leading to less
halo effects, improved color reproduction,
and lower perceptual dissimilarity. The
model with the image formation loss ob-
tains lower MSEs and LMSEs on average,
while the model with the image formation
loss achieves similar performance for MSE
and LMSE on the ShapeNet set. Consid-
ering the generalization ability and the ef-
fect on a unseen real-world dataset, the net-
work with image formation loss achieves
best performance for all metrics. Employing image formation has thus proven positive
impact in constraining CNNs for intrinsic image decomposition.
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MSE LMSE DSSIM

Albedo Shading Albedo Shading Albedo Shading

DirectIntrinsics [38] 0.1487 0.0505 0.6868 0.3386 0.0475 0.0361
ShapeNet [58] 0.0023 0.0037 0.0349 0.0608 0.0186 0.0171
IntrinsicNet 0.0005 0.0007 0.0297 0.0505 0.0072 0.0084
RetiNet 0.0003 0.0004 0.0205 0.0253 0.0052 0.0064

Table 2.2: Evaluation results on ShapeNet. Our proposed methods yield better results on the test set.
Moreover, our RetiNet model outperforms all by a large margin.

Input IN(-) IN(+) RN GT Input IN(-) IN(+) RN GT

Figure 2.5: Evaluation results on the synthetic test set. All proposed models produce decent intrinsic
image compositions. IN(+/-) denotes the IntrinsicNet with/without the image formation loss, and RN
denotes the RetiNet model.

2.5.2 ShapeNet Dataset

We now test our models on the ShapeNet test partition. We follow the approach of [58]
and randomly pick 1 image per test model, resulting in 7K test images. For all experiments,
the same test set is used. Table 2.2 shows the quantitative evaluation results of the synthetic
test set ofman-madeobjects. Figure 2.5 displays (visual) comparison results. Ourproposed
methods yield better results on the test set. Moreover, our RetiNet model outperforms all
by a large margin. Visual comparison results show that all of our proposed models are
capable of producing decent intrinsic image compositions on the test set.

2.5.3 MIT Intrinsic Benchmark

TheMIT dataset [56] consists of 20 object-centered real-world images with a single canon-
ical light source. The quantitative and qualitative comparison to state-of-the-art methods
are shown in Table 2.3 and Figure 2.6, respectively. Our proposed methods yield bet-
ter results compared with the ShapeNet [58] and DirectIntrinsics [38] models. Visually,
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MSE LMSE DSSIM

Albedo Shading Albedo Shading Albedo Shading

Retinex [56] 0.0032 0.0348 0.0353 0.1027 0.1825 0.3987
DirectIntrinsics [38] 0.0277 0.0154 0.0585 0.0295 0.1526 0.1328
ShapeNet [58] 0.0468 0.0194 0.0752 0.0318 0.1825 0.1667

IntrinsicNet 0.0051 0.0029 0.0295 0.0157 0.0926 0.0441
RetiNet 0.0128 0.0107 0.0652 0.0746 0.0909 0.1054
RetiNet + GT∇ 0.0072 0.0034 0.0429 0.0224 0.0550 0.0443

Table 2.3: Evaluation on the MIT intrinsic benchmark [56]. Our proposed methods yield better results,
while experiment with intrinsic gradient ground-truths shows the benefits of exploiting them.

Input SN IN(-) IN(+) RN GT Input SN IN(-) IN(+) RN GT

Figure 2.6: Qualitative results on the MIT intrinsic benchmark [56]. SN is the ShapeNet model [58],
IN(+/-) are the IntrinsicNet with/without the image formation loss. RN is the RetiNet model (with the
image formation loss). The proposed models properly recover the reflectance and shading information.
IN(+/-) create blurry results compared with RetiNet, while IN(-) also suffers from color artifacts.

our proposed models properly recover the reflectance and shading information, in which
RetiNet’s results havemore vivid colors, with sharper edges, and less color artifacts, despite
the strong shadow cast, c.f . the deer image. IntrinsicNet trained without image formation
loss produces even more artifacts. Figure 2.7 displays a detailed analysis of RetiNet.

2.5.4 In-the-wild Images

We also evaluate our RetiNet algorithm on real and in-the-wild images. Figure 2.8 shows
the performance of our method (RetiNet) for a number of images. The results show that
it can capture proper reflectance image, free of shadings caused by geometry. Finally, we
present the reconstructed input from its albedo and shading prediction to show that the
decomposition is consistent.
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Input IN(+) RN GT

Figure 2.7: Close-ups of reflectance prediction on the MIT intrinsic benchmarks [56]. IN(+) is the
IntrinsicNet with the image formation loss, and RN the RetiNet model with image formation loss. Re-
flectance images appear with more vivid color for RetiNet, while IN(+) has color artifacts and blurriness.

Input Albedo Shading Reconstruction

Figure 2.8: Inference RetiNet using real in-the-wild images shows proper shading-free reflectance.

2.6 Conclusions

We propose two deep learning models considering a physics-based reflection model and
gradient information to steer the learning process. To train the models, an object centered
large-scale synthetic dataset based on physical lighting models with intrinsic are generated.
The proposed models are evaluated on synthetic, real world and in-the-wild images. The
evaluation results demonstrate that the new model outperforms existing methods. Fur-
thermore, visual inspection show that the image formation loss function augments color
reproduction and the use of gradient information produces sharper edges.
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3
Three for One and One for Three:

Flow, Semantics, and Surface Normals

Optical flow, semantic segmentation, and surface normalsdepict dif-
ferent traits, yet together they bring complementary cues for scene understand-
ing. In this chapter, we study the impact of one modality on the others and

their efficiency in combination. A convolutional refinement network is trained with mul-
timodal input and apart from RGB images to enforce joint modality features. The ex-
perimental results on both structured and unstructured datasets show positive influence
among the three modalities, especially for objects’ boundaries, and region consistency.

3.1 Introduction

Optical flow, semantic segmentation, and surface normals represent different aspects of
objects in a scene, i.e. motion, category, and geometry (Figure 3.1). While they are of-
ten approached as single-task problems, their combinations are of importance for general
scene understanding as humans also rarely perceive objects in a single modality. As differ-
ent information sources provide different cues to understand the world, they could also
become complementary to each other. For example, certain objects have specific motion
patterns (flow and semantics), an object’s geometry provides specific cues about its cate-
gory (surface normals and semantics), and object’s boundary curves provide cues about
motion boundaries (flow and surface normals).
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(a) (b) (c) (d) (e)

Figure 3.1: Multimodal data from the Virtual KITTI [18] (top) and EDEN (Chapter 6, bottom) datasets:
(a) RGB image, (b) semantic segmentation, (c) optical flow, (d) optical flowmagnitude, (e) surface normals.

Scene-based optical flow estimation is a challenging problem because of complicated
scene variations such as texture-less regions, largedisplacements, strong illumination changes,
cast shadows, and specularities. As a result, optical flowestimation tends to performpoorly
in homogeneous areas or around objects’ boundaries. Another hindrance for many opti-
cal flow estimators is the common assumption of spatial homogeneity in the flow structure
across an image [69]. That assumption poses difficulties as different objects have different
motion patterns: objects closer to the viewer have stronger optical flow; independent ob-
jects have their own flowfields, while static objects follow the camera’smotion (Figure 3.1).
Thus, by modeling optical flow based on image segmentation, one could improve flow ac-
curacy, especially at objects’ boundaries [69, 70].

The goal of image segmentation is to partition an image into different parts that share
common properties. In particular, semantic segmentation assigns to each image pixel the
object category to which the pixels belong. It is a challenging task especially in videos, due
to inherent video artifacts such asmotion blur, frame-to-frame object-to-object occlusions
and object deformations. As optical flow encodes temporal-visual information of image se-
quences, it is often exploited to relate scene changes over time [71, 72, 73]. Yet, optical flow,
as an approximation to objectmotion field [74], also encodes the 3D structure of a viewed
scene. If the camera’s translation is known beforehand, an optical flow image can be used
to recover the scene depth [75]. Considering a moving camera, closer objects appear with
strongermotion fields than distant ones, independentmoving objects have prominentmo-
tion patterns compared to the background, and different object shapes generate different
motion fields because of depth discontinuities. Therefore, temporal and structural infor-
mation provided by optical flow can guide semantic segmentation by providing cues about
scene ambiguities.
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Surface

Semantic segmentation

Optical
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depth discontinuity and
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motion characteristics
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geometry invariant to

lighting conditions

object boundaries

provides object types
and boundaries
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object geometry helps
identifying categories

and boundaries
provides object types

Figure 3.2: The relationship among the three modalities: optical flow, semantics, and surface normals;
and their impacts on one another.

Surface normals, on the other hand, represent changes of depth, i.e. the orientation of
object surfaces in 3D space. Thus, they are independent of illumination effects or object
textures. That information is particular helpful for texture-less objects, regions of strong
cast shadows, or scenes of less visibility. Additionally, object boundaries provide cues
about both motion and semantic boundaries. Therefore, surface normals are expected to
assist the optical flow estimation process by providing various cues. Figure 3.2 illustrates
the relationship of object boundaries depicted in segmentation and 3D structure cues in
optical flow and surface normal images.

In this chapter, we study themutual interaction of optical flow, semantic segmentation,
and surface normals and analyze their contribution to each other. We employ a modular
approach and adapt a convolution based supervised refinement network to examine the
efficiency of joint features from the different modalities.

In summary, our contributions are: (1) the connection among the three modalities (op-
tical flow, semantic segmentation and surface normals), (2) adapting a convolutional based
supervised refinement network to improve one of the three using the other two, (3) an ex-
perimental study to estimate all three in a joint fashion.
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3.2 Optical Flow, Semantics, and Surface Normals

3.2.1 RelatedWork

In this section, we review the work on optical flow, semantic segmentation, and surface
normals and how they are mostly targeted as single tasks.

Optical flow is defined as the apparentmotion field resulted from an intensity displace-
ment in a time-ordered sequence of images. It is an approximation to image motion, be-
cause estimating optical flow is an ill-posed problem [74]. To model the displacement of
image intensities that are caused solely by the objects’ motion in the physical world, several
priors are derived to constrain the problem. Twoof themost exploited ones are the assump-
tions of brightness constancy andLambertian surface reflectance [74, 76, 77]. Besides, [78]
makes use of robust statistics to promote discontinuity-preservation. Many popular meth-
ods also apply coarse-to-fine strategies [79, 80, 81]. On the other hand, deep convolutional
neural networks (CNNs) are dominating the fieldmore recently. For instance, [82] applies
a coarse-to-fine strategy with the help of a CNN framework. Then, Dosovitskiy et al. [83]
proposes an end-to-end CNN called FlowNet, which is later improved by Ilg et al. [84] to
perform state-of-the-art optical flow estimations.

Semantic Segmentation is vital for robot vision and scene understanding tasks as it
provides pixel-wise annotations to scene properties. Traditional methods approach the
problem by engineering hand-crafted features and perform pixel-wise classification with
the help of a classifier [85, 86]. Otherworks try to group semantically similar pixels [87, 88].
Likemost of the computer vision tasks, semantic segmentation also benefits frompowerful
CNNmodels. After the pioneeringwork of [89],many other deep learning basedmethods
are proposed such as [90, 91].

Surface Normals provide information about an object’s surface geometry. Traditional
methods that infer 3D scene layout from single images rely on primitives detection such
as oriented 3D surfaces [92] or volumetric primitives [93]. Their performance depends
on the discriminative appearance of the primitives [94]. In the context of deep learning,
Wang et al. [95] proposes amethod to predict surface normals from a single color image by
employing a scene understanding network architecture with physical constraints; Bansal et
al. [96] predicts surface normals and use them as an intermediate representation for 3D
volumetric objects for model retrieval. Eigen and Fergus [97] designs an architecture that
can be used for predicting each of the three modalities, including depth, surface normals,
and semantic segmentation, in a separating manner.

28



3

3.2. OPTICAL FLOW, SEMANTICS, AND SURFACENORMALS

3.2.2 Inter-modal Influences

Semantics and surface normals on optical flow prediction

Object motion field, although varies across image regions, is often treated in the same way
by many optical flow methods. Semantic segmentation provides a way to partition an im-
age into different groups of predefined semantic classes. Hence it provides optical flow
with information of object boundaries, and helps to enforce motion consistency within
similar object regions. Similar ideas employed by [70] with object instance or [69] with 3
semantic classes (things, planes, and stuff) have shown to improve optical flow accuracy.

On the other hand, surface normals represent the orientation of objects’ surfaces in 3D
space. They contain geometry information that is invariant to scene lighting and objects’
appearance, which is rendered useful for optical flow in case of intricate lighting such as
cast shadows, texture-less regions, specularities, etc. Additionally, surface normals can be
beneficial for optical flow for depth order reasoning, and improve occlusion boundaries.

Optical flow and surface normals on semantic segmentation

Optical flow is often exploited for its ability in relating scene changes along time-axis: He et
al. [98] aggregates information frommultiple views using optical flow toperform semantic
segmentation for a single frame, while Zhu et al. [73] uses optical flow to propagate image
features from keyframe images to nearby frames, speeding up the segmentation process.
Several methods exploit motion information to segment images into foreground objects
from amoving background, such as SegFlow [99] or FusionSeg [100]. However, they only
rely on themotion properties of objects and do not take into account the objects’ identities.

In this chapter, we leverage the notionof segmentation into amore semanticmeaning of
a scene, i.e. we donot limit the segmentation to just foreground/background [99] or coarse
general classes (things, planes, stuff) [69], but rather adhere to the current segmentation
problems in the literature, which on average, consist of 10–20 classes [18, 101, 102].

As objectmotion field is the projection of 3D object motions, depth discontinuities cor-
respond to motion boundaries, making optical flow an indication of scene depth. At the
same time, surface normals represent the changes of depth and the alignment of object sur-
faces. Such information is particularly useful for semantic segmentation, as objects can be
recognized not only from their appearances, but also from their shape and geometric char-
acteristics. Thus, similar tomethods that recognize objects from depth by associating each
objectwith theirmotion type, it is feasible to recognize objects using geometry information
signified from optical flow and surface normals.
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Optical flow and semantics on surface normals prediction

Similar to the case of optical flow, semantic segmentation provides object boundary infor-
mation, which, in many cases, corresponds to depth disruption. Thus it enhances object
boundaries, and local coherence in predicting surface normals. Ladicky et al. [103] en-
forces smooth surface normals estimated with contextual information.

Optical flow represents motion information, yet also signifies geometry structure of a
scene. As surface normals are identified by the rate of change in the location of objects,
they are highly correlated. Thus, optical flow can provide useful cues to enhance surface
normals, in terms of objects’ inner structure as well as their boundaries.

3.3 Method

To study the relationship between the three modalities, we follow a refinement strategy
based on the work by Jafari et al. [104], and adapt the architecture to train a joint refine-
ment network designed for semantic segmentation, surface normals and optical flow.

An overview of the architecture for joint refining optical flow and semantic segmenta-
tion is shown in Figure 3.3. The network input and output is adjusted according to the
corresponding number of modalities. The example network in Figure 3.3(b) takes in a
preliminarily predicted semantic segmentation and optical flow at different scales and cou-
ples them in a joint optimization process. The input to a branch scale s (Figure 3.3(a)) is
composed of a segmentation image Ss and a flow image Fs, both sub-sampled to 1

2s of the
original size. The outputs of the scale branches are up-sampled, as the refinement network
provides output at the original image size. We add a scale branch at the original size to the
proposed architecture [104], and expand the network depth to increase its capacity to cope
with different input modalities. When there are 3 modality inputs, the scale branch will
have a third input, which is then concatenated to the other two.

We also leverage the study of cross-modality influence performed in [104], and the abil-
ity of the refinement network to learn a joint representation that benefits frombothmodal-
ities. We keep themulti-scale encoder part fixed (up to the concat layer) and partially decou-
ple the decoder. That allows the network to have different capacities in using the joint fea-
tures learned from the encoder to refine differentmodalities. Specifically, we examine three
different architectures that impose different coupling levels of joint features as illustrated in
Figure 3.4. Namely, we study the ability of refinementwhen there is only one task required,
hence zero-coupling (Figure 3.4a), when both 2 tasks are loosely coupled (Figure 3.4b), or
tightly coupled (Figure 3.4c).
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Figure 3.3: Joint refinement network for two modalities with tight feature coupling (left), inspired
by [104]. The outputs of the modal-specific networks are integrated at different scales, using scale branch
architecture (right), and up-sampled before concatenation.

(b)(a) (c)

Figure 3.4: Coupling levels of joint features in refinement: (a) zero coupled, where joint features refine a
single task; (b) loosely coupled, where joint features branch to refine each task separately; (c) tightly coupled,
where joint features share a decoder to refine all tasks.

3.4 Experiments

3.4.1 Experimental Setup

Datasets

As pixel-wise annotations of optical flow and surface normals are not intuitive for manual
labelling, there are no large-scale real-world dataset having annotations for both optical
flow and surface normals. As a result, we rely on synthetic datasets for evaluation purpose.

EDEN. The synthetic dataset of Enclosed garDEN scenes (EDEN) features differ-
ent vegetation types such as trees, bushes, flowers, and grass, as well as various terrain and
landscape types. The dataset construction details are described in Chapter 6. We use the
first release of the dataset, consisting of 300 images from 10 scenes in 5 different lighting
conditions (clear, cloudy, overcast, sunset, and twilight), resulting in 15K images.

Virtual KITTI [18] (VKITTI) is a large-scale synthetic dataset following the setting
of KITTI dataset [105] for autonomous driving problems. The VKITTI scenes are highly
structured, compared to EDEN, where objects are mostly rigid and with clear boundaries,
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Dataset FlowNetC with GT sem with GT norm

VKITTI 2.68 2.08 2.09

EDEN 16.19 12.17 12.28

(a) Quantitative results

FlowNetC with GT sem with GT norm Ground TruthRGB

(b) Qualitative results

Figure 3.5: Quantitative (a) and qualitative (b) results of oracle optical flow refinement on VKITTI
(top) and EDEN (bottom). Semantic information and surface normals comparably improve optical flow
performance over the baselines and the crispness of objects’ boundaries

thus expected to have relatively lower impact on geometry-related tasks. Each image frame
comes with pixel-wise annotation of ground truth instance-object segmentation, optical
flow, anddepth information. To get surface normal ground truth, we convert ground truth
depth images using the method described in [28]. As the depth images are produced by a
simulation renderer, they are free from noise and uncertainties, producing less artifacts.

Baselines & Evaluation metrics

Each of the three modalities have their own baseline and evaluation metric.
Optical Flow.Weuse FlowNetC [83] as our baseline because of its balance in speed and

accuracy [72, 99] (and is therefore preferable over the less accurate FlowNetS or the more
expensive FlowNet2 [84]). Wefine-tune the network for each dataset and report the results
as baseline. Performance is evaluated by average endpoint errors (EPE): lower is better.

Semantic Segmentation. We use the ResNet-101 architecture [106] as the baseline,
and follow thepractice of [99, 107] to add correspondingdecoder layers so that thenetwork
can output full-resolution images. Performance is measured by mean intersection-over-
union (mIOU), shown in percentage, the higher the better.

Surface Normals. We follow the MarrRevisited [96] architecture and report their re-
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Dataset ResNet with GT flow with GT norm

VKITTI 44.11 46.73 51.12

EDEN 37.88 45.27 48.47

(a) Quantitative results

ResNet with GT flow with GT norm Ground TruthRGB

(b) Qualitative results

Figure 3.6: Quantitative (a) and qualitative (b) results of oracle semantic segmentation refinement on
VKITTI (top) and EDEN bottom. Adding surface normals showmore improvement on semantic segmenta-
tion than adding optical flow, indicating more correlation of object shapes and types over motion. Both two
modalities help capture more fine-detailed segmentation (e.g. tree leaves and fence wires).

sults as the baseline. Evaluation is based on the angular differences between predicted nor-
mals and ground truth [94]. The 3 error measurementsmean,median, rmse show the dif-
ference (degrees) between predicted and ground truth normal vectors, thus lower is better.
The 3 measurements 11.25◦, 22.5◦, 30◦ count the number of pixels within the indicated
angular thresholds; the results are shown in percentage, and higher is better.

3.4.2 Baseline & Oracle Experiments

The first set of experiments is to test the hypothesis that the modalities have a positive im-
pact on each other and to establish the baselines. For each experiment, we train the afore-
mentioned baseline networks, and have the output results passed into the refinement ar-
chitecture (described in Section 3.3) together with ground truths of other modalities.

Optical Flow

Figure 3.5a shows the baseline and refinement results for optical flow, using ground truth
segmentation and surface normals. In general, both modalities help improve optical flow.
The refined results in Figure 3.5b appear crispier, especially along the objects’ boundaries.
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mean (↓) median (↓) rmse (↓) 11.25 (↑) 22.5 (↑) 30 (↑)
V
K
IT

T
I MarrRevisited 48.13 48.34 57.44 17.39 19.81 27.44

with GT flow 11.08 3.49 16.93 62.58 77.72 87.81
with GT sem 10.99 2.97 16.55 61.33 76.51 89.22

ED
EN

MarrRevisited 40.25 46.68 50.25 29.44 30.68 34.42
with GT flow 9.72 8.12 13.33 61.35 89.38 97.37
with GT sem 8.49 6.38 11.96 68.57 92.33 97.86

(a) Quantitative results

RGB MarrRevisited with GT flow with GT sem Ground Truth

(b) Qualitative results

Figure 3.7: Quantitative (a) and qualitative (b) results of oracle surface normals refinement on VKITTI
(top) and EDEN (bottom). Adding oracle optical flow or semantic information significantly outperforms the
baselines. Semantic information results in more improvement, indicating better correlation of object types
and shapes over motion.

Semantic Segmentation

As shown in Figure 3.6a, optical flow and surface normals also improve semantic segmen-
tation over the baseline, since the outline of the objects obtained from these modalities are
more informative. The geometry informationprovidedbyflowandnormals helps to retain
details in semantic segmentation; e.g. the lamppost, tree branches, and fence wires are well
retained in Figure 3.6b. However, as the refinement module does not have access to the
original image (raw RGB), geometry information alone cannot help much in correcting
semantic errors that are present in the input (yellow regions in the second row).

Surface Normals

As shown in Figure 3.7a, using optical flow and semantic segmentation helps to imrpove
surface normal prediction significantly. The refinement using flow seems to be better than
using segmentation for theVKITTI case, whereas it is the otherway around for the EDEN
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Target Baseline GT Predicted

zero zero loose tight tight+

Semantic segmentation (↑) 44.11 46.73 44.71 41.2 41.1 43.9

Optical flow (↓) 2.68 2.08 2.13 2.43 2.41 2.42

Table 3.1: Refining segmentation and flow based on predictions on VKITTI dataset. Performance is
measured inMean IOU (↑) and Average EPE (↓) respectively. Input to the refinement module composes of
segmentation and optical flow, either both predicted (Predicted) or with one ground truth (GT ); the refined
output is 1 single modality (zero) or both 2 modalities (loose and tight). tight+ is when the input modalities
are updated in an end-to-end training with RGB input.

case. This can be explained as estimating surface normals requires a network to understand
the geometry information of the scene, which is easier for optical flow in EDEN as all of
the objects are static and thus optical flow field depends solely on the camera ego-motion,
while it is not the case for VKITTI, segmentation hasmore advantage as objects’ shapes are
more uniform (e.g. houses, cars, roads’ surface) than those in EDEN (e.g. bushes, rocks,
grass). The refined result using oracle flow produces sharper details, while the ones with
oracle segmentation are more accurate (Figure 3.7b).
To conclude, differentmodalities, when being used in theirmost accurate form (GT), pro-
vide complementary cues to each other, thus improving the performance of other modali-
ties: segmentation provides flow and normals with objects’ identities and boundaries; op-
tical flow provides segmentation and normals motion and geometry information; surface
normals provide segmentation and flow with geometry and objects boundaries. In the
following experiments, we examine the usefulness of different modalities when they are
predicted and the interaction of more than one modalities.

3.4.3 Cross-Modality Influence

Model comparison

In this experiment, we consider joint learning of semantic segmentation and optical flow
on the VKITTI dataset [18]. We examine the different coupling levels during refinement:
zero coupling, loose coupling, and tight coupling (see Figure 3.4). We also expand the tight
coupling, into an end-to-end learning pipeline (denoted by tight+), where the segmenta-
tion and optical flow networks are fine-tuned together with the refinement module.

The results are shown inTable 3.1. From the results, weobserve that using ground-truth
or predicted segmentation to refine optical flow, the performance always improves. The
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Method FlowNetC with PR sem with PR norm with PR sem+norm

VKITTI 2.68 2.13 2.23 2.14

Nature 16.19 12.41 15.48 12.45

(a) Quantitative results

RGB FlowNetC with PR sem with PR norm
with

PR sem+norm Ground Truth

(b) Qualitative results

Figure 3.8: Quantitative (a) and qualitative (b) results of prediction-based optical flow refinement on
VKITTI (top) and Nature (bottom). Adding predicted semantic and surface normals improve optical flow
performance. Surface normals are less accurate for deformable objects in EDEN, resulting in diminishing
gains compared to semantic information. Predicted semantic information and surface normals improve the
object delineation in optical flow prediction.

difference between ground-truth and predicted segmentation is small compared to the dif-
ference between the baseline and the refined models. However, for segmentation, refining
based on flow is only beneficial when the zero coupling is used. Likely, this is because the
predicted flow does not contain accurate semantic cues to improve segmentation. Based
on this experiment we use the zero coupling for the remaining experiments.

Flow from Segmentation andNormals

The refinement results for optical flowusing predictedmodalities are shown in Figure 3.8a.
Because of inaccuracies in predicted normals, the refined results do not improve as much
as with predicted segmentation, or even hurt in case of EDEN dataset. In general, the two
modalities help optical flow to obtain better delineation. Figure 3.8b shows an occlusion
case where part of the car is occluded by a traffic sign, FlowNetC recognizes it but fails
to obtain the correct shape of the occlusion, which can be recovered with surface normal
information and improved using segmentation and surface normals.
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Method ResNet with PR flow with PR norm with PR flow+norm

VKITTI 44.11 44.71 45.66 44.55

EDEN 37.88 45.29 45.25 45.02

(a) Quantitative results

RGB ResNet with PR flow with PR norm
with

PR flow+norm Ground Truth

(b) Qualitative results

Figure 3.9: Quantitative (a) and qualitative (b) results of prediction-based semantic segmentation refine-
ment on VKITTI (top) and EDEN (bottom). Adding predicted surface normals and optical flow improves
semantic segmentation performance and object delineation. Structured scenes of VKITTI result in higher
gain of surface normals over optical flow compared to EDEN.

Segmentation from Flow andNormals

Predictedoptical flowand surfacenormals containdifferent inaccuracies. Thus,whenused
to refine the semantic segmentation, they confuse the semantic cues, and to some extent,
have negative impact on the preliminary segmentation results. This explains the decreasing
results and slight improvements inFigure 3.9a. Visual inspectiononFigure 3.9b shows that
refinement of flow and surface normalsmake the boundaries smoother, reducing the effect
of incorrect areas. In combination, they capture more details and help to produce better
segmentation.

Normals from Flow and Segmentation

Surfacenormal refinement results areprovided inFigure 3.10a and illustrated inFigure 3.10b.
The confusion in the sky and tree regions of the baseline estimation is removed when re-
fined with different modalities. Information of objects’ categories and boundaries pro-
vided by semantic segmentation helps retaining fine details in the results (e.g. pavement in
VKITTI, fences in EDEN). However, the inaccuracies of predicted flow leave some arti-
facts and makes the results less accurate (e.g. the sky, tree and fences regions).
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Dataset mean (↓) median (↓) rmse (↓) 11.25 (↑) 22.5 (↑) 30 (↑)
V
K
IT

T
I MarrRevisited 48.13 48.34 57.44 17.39 19.81 27.44

with PR flow 12.28 4.09 18.05 58.37 73.23 84.84
with PR sem 11.43 2.71 17.22 60.48 74.34 86.68

with PR flow+sem 11.67 3.98 17.26 59.65 74.70 86.48

ED
EN

MarrRevisited 40.25 46.68 50.25 29.44 30.68 34.42
with PR flow 11.33 9.77 14.33 55.61 87.08 96.71
with PR sem 8.95 6.90 12.40 66.03 91.52 97.80

with PR flow+sem 9.29 7.50 12.85 63.58 90.51 97.57

(a) Quantitative results

RGB MarrRevisited with PR flow with PR sem
with

PR sem+flow Ground Truth

(b) Qualitative results

Figure 3.10: Quantitative (a) and qualitative (b) results of prediction-based surface normals refinement
on VKITTI (top) and EDEN (bottom). Adding predicted optical flow and semantic information improve
surface normals prediction. Semantic-based refinement produces best results in both datasets.

3.5 Conclusions

Wehave analyzed the combinationof three importantmodalities in computer vision, namely
optical flow, semantic segmentation, and surface normals, and their impact on each other.
Because each modality contains different type of information, in combination, they pro-
vide complementary cues to enhance each other. We approached the problem at amodular
levelwhere the inputs are kept fixed at thepreliminary estimation. Futureworkwill include
end-to-end training of modalities to exploit raw image features.
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Automatic Generation of Dense Non-Rigid

Optical Flow fromObject Segmentation

There hardly exists any large-scale datasets with dense optical flow of
non-rigid motion from real-world imagery as of today. The reason lies mainly in
the difficulty of manual annotation of optical flow ground-truths. To circum-

vent theneed forhumanannotation,wepropose a framework to automatically generate op-
tical flow from real-imagery videos. The method extracts and matches objects from video
frames to compute initial constraints, and applies deformation over the objects of interest
to obtain dense flow fields. Several ways to improve dataset variations are proposed. Exten-
sive experimental results show that training on our automatically generated optical flow
outperforms methods that are trained on rigid synthetic data for FlowNet-S, PWC-Net,
and LiteFlowNet architectures.

4.1 Introduction

Optical flow estimation has gained significant progress with the emergence of convolu-
tional neural networks (CNNs) [83, 84, 108, 109]. With CNNs designed for optical flow,
there is a growing demand for large scale datasets with corresponding dense optical flow
fields. However, large-scale datasets with real world imagery and corresponding dense op-
tical flowfields donot exist. The reason is that dense flowfields are neithermeasurablewith
a sensor nor trivial to be annotated byhumans. For example, theKITTIdatasets [105, 110]
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(b) Image (c) Image(a) Image (d) Image (e) Background

Figure 4.1: Overview of the proposed pipeline to generate a dense optical flow field from two video
frames: (a) the objects of interest are extracted; (b) motion characteristics are captured by finding correspon-
dences between the objects; (c) object deformation constrained by the correspondences results in a dense
flow field; (d) the resulting flow field is used to warp the object; and (e) both the extracted first-frame object
and the warped object are pasted on a random background. The resulting pair of frames is used to train a
deep neural network with the dense flow field as the ground truth.

are constructed by registering point clouds from 10 consecutive frames. Then, by manual
labelling, ambiguous points are removed before projecting the frames back to the image
space. While being the largest optical flow dataset available today with real imagery, only
200 pairs of frames are available. This is insufficient for supervised training of CNNs for
optical flow estimation.

To resolve the data demand of CNNs, synthetic data are often used. Large-scale syn-
thetic datasets are generated from object images (e.g. chairs), which are deformed by affine
transformations (zooming, rotation, and translation) and projected on randomly trans-
formed backgrounds. This process is the basis of the FlyingChairs dataset [83]. Due to the
large number of available frames, these datasets are useful for training optical flow CNNs.

Computer-generated imagery (CGI) datasets are also the norm. Computer-aided de-
sign (CAD) object models are used in a virtual world which are rendered to images with ar-
bitrary lighting and environments. Examples include theMPI-Sintel [40],VirtualKITTI [18],
FlyingThings3D, Monkaa, and Driving [55] datasets. CGI techniques allow datasets to
vary highly in appearance (geometry, textures, lighting, etc.) and motion types (rigid, non-
rigid, motion blur, etc.), thus are useful sources for assessing robustness of optical flow
prediction algorithms. A well-known optical flow benchmark is provided by the MPI-
Sintel [40], whose images and annotations are rendered from the CGImovie Sintel. How-
ever, the use of CGI textures in such datasets might not reflect the challenges in real-world
images (e.g. camera noises) [111], thus limiting the generalibility of results.

Trainingwithnon-rigidmotion is important for optical flow in realworld imagery, since
many real objects deform in a non-rigid manner. Unfortunately, non-rigid optical flow
ground-truth is not available in the current datasets [105, 110].
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Therefore, in this chapter, we present a new approach to automatically generate dense
non-rigid optical flow fields from real-imagery videos. As illustrated in Figure 4.1, our ap-
proach collects motion statistics from real-imagery videos by computing image correspon-
dences between segmented objects of interest. The segmented objects are warped to gen-
erate complex deformations according to physical principles to generate dense flow fields.
Our method generates large amounts of optical flow data consisting of real-imagery tex-
tures and non-rigid motions to be used for training CNNs for optical flow estimation.

The contributions of this chapter are threefold. (1) We introduce the first method to
automatically generate dense optical flow fields from real-videos, withoutmanual labeling;
(2)wemake available a datasetwith 30K frames consisting of natural textures andnon-rigid
optical flow, created from the DAVIS [112] video dataset; and (3) we extensively analyze
optical flowmethods trained using our dataset.

4.2 RelatedWork

4.2.1 Optical FlowMethods

As optical flow estimation is ill-posed [74], various assumptions are proposed to constrain
the problem [113, 114], such as the brightness constancy, local smoothness, and Lamber-
tian surface reflectance [74, 76]. Strategies based on coarse-to-finewarping [80, 81, 115] are
employed to reduce the correspondence search space. EpicFlow [79] proposes an effective
post-processing for interpolating sparse matches to dense flow [70, 116, 117, 118].

Supervised training Recently, with the success of CNNs, optical flow estimation
is shifted from an energy-optimization process to a data-driven approach. Dosovitskiy et
al. [83]proposeFlowNet, aCNNwhich is trained end-to-end. Thenetwork is extendedby
Ilg et al. [84] to provide FlowNet2. Other methods propose ways to apply domain knowl-
edge and classical principles such as spatial pyramid, warping, and cost volumes for fast
processing. For example, LiteFlowNet [108] has 30 times fewer parameters thanFlowNet2.
PWC-Net [109] has 17 times fewer parameters.

Unsupervised training To avoid the need to generate optical flow ground truth,
Meister et al. [119] replace the supervised loss by an occlusion-aware bidirectional flow es-
timation and trains the FlowNets in an unsupervised way. Zou et al. [120] use a similar
approach by applying a cross-task loss. SelFlow [121] distills reliable flow estimations from
non-occluded pixels, and uses these predictions as ground truth to learn optical flow. How-
ever, unsupervised methods are limited by the power of loss functions i.e. their ability to
model the problem and the contribution of weights for each component loss [119].
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4.2.2 Optical FlowDatasets

Most of the benchmark datasets provide optical flow for synthetically generated scenes, in-
cludingFlyingChairs [83],MPI-Sintel [40],VirtualKITTI [18], FlyingThings3D,Monkaa,
Driving [55], BodyFlow[122],GTAV[123], SceneNetRGBD[124], andUvA-Nature [125].
Only the KITTI datasets [105, 110] provide optical flow for real-world images, with only
200 frames of car-driving scenes, most of which are rigid motion patterns.

Thefirst attempt to generate a large-scale dataset suitable for training deep learningmod-
els is FlyingChairs [83]. Dosovitskiy et al. propose to use 2D images of chairs rendered
fromCADmodels deformed by affine transformations. The first frame of a pair is created
by randomly positioningmultiple chair images on an image background. Then, the second
frame is generated by warping each object, using a flow field generated by the affinemodel,
with random parameters. While the parametric model is able to generate many images, the
affine transformation yields rigid optical flow fields limiting the type of motion.

SlowFlow [126] contains natural videos with non-rigid motion. The method estimates
optical flow for image sequences captured fromhigh-resolution andhigh-speed cameras (>
1440p resolution and> 200 fps). However, the requirement of special recording devices
as well as the potential inaccuracy in the estimated optical flow limits its applicability.

Data Augmentation Data augmentation entails a plethora of strategies to create
more trainingdata. It is commonlyused inmany tasks, including image classification [127],
image segmentation [89], and depth estimation [128].

Widely used techniques for augmenting image data is to perform geometric augmenta-
tion (such as translation, rotation, and scaling) and color augmentation (such as changing
brightness, contrast, gamma, and color). Data augmentation for optical flow networks is
first proposed by [83] and studied in detail by [111]. The results show that both color
and geometry types of augmentation are complementary and improve the performance.
Inspired by these data augmentation techniques, we propose methods to increase the di-
versity of the generated optical flow data by texture augmentation.

In conclusion, large scale datasets with dense optical flow of non-rigid motion from
real-world imagery are not available today. This is mainly due to the difficulty of human
annotation to generate optical flow ground-truth. Instead, synthetic optical flow datasets
with computer-generated imagery are created. To circumvent human annotation and the
use of synthetic imagery data, we propose a framework to automatically generate dense
non-rigid optical flow from real-world videos.
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4.3 Generating Image Pairs for Optical Flow

In this section, we describe our approach to generate a dense optical flow field from a pair
of images, see Figure 4.1. The framework is described in the following sections as follows:

3.1 Image segmentation to extract the object of interest in both frames;

3.2 Image matching to obtain corresponding points between the frames;

3.3 Image deformation to compute the flow field, guided by the correspondences;

3.4 Warping of the first object with the flow field to generate a warped object;

3.5 Random background on which we paste the first object and the warped object as an
input pair for training, with the optical flow field as ground truth.

4.3.1 Image Segmentation

Our aim is to generate flow fields from non-rigid moving objects in videos. From a pair of
sequential frames It and It+Δ in a video sequence, where Δ is the frame distance (Δ = 1
for consecutive frames), the objects of interest It and It+Δ are localized, see Figure 4.1.a.

We compare different ways to localize the objects, including ground truth segments and
by using a pre-trained Mask R-CNN [129]. Segments can be the entire image frame and
do not need to correspond to the objects precisely (see Section 4.4.3 for more details).

To increase the amount of variations in object motion, different offsets between frames
(Δ) MPI-re explored (Section 4.4.1). The localization of objects is also used to replace tex-
tures while keeping their shapes (Section 4.4.2).

4.3.2 ImageMatching

The generated flow fields should adhere to the non-rigid motion of the objects in videos.
To steer the computation of the flow field, the statistics of the objectmotion are computed
byfinding imagematches (or correspondences) between the segmented objects It, and It+Δ.
The step is illustrated in Figure 4.1.b.

We use the Deep Matching [82] algorithm to obtain a mapping of a set of point-to-
point matches. We denote withM

(
xkt
)
= xkt+Δ the map of the pixel coordinates of the

k-th pixel in It to the correspondingpixel coordinatexkt+Δ in It+Δ. Theobtained correspon-
dences are quasi-dense and are robust to non-rigid deformations and repetitive textures.
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(a)

(b) (c)

(d)

Figure 4.2: ARAP image deformation: (a) constructing a control lattice, (b) to (c) deforming the lattice
steered by the image matches, (d) obtaining the flow field by interpolating the deformed lattice.

4.3.3 Image Deformation

To generate a dense flow-field, we deform the segmented object It to match with It+Δ, us-
ing the obtained imagematchesM to guide the deformation process, see Figure 4.1.c. The
as-rigid-as-possible (ARAP) [130, 131, 132, 133] principle is used to deform the objects.
ARAP allows for large non-rigid deformations of the objects but still conforming to phys-
ical feasibility by minimizing scaling and shearing factors of the local image regions.

The deformation method is illustrated in Figure 4.2. First, we define a rectangular grid
tightly bounding the object It, where each vertex corresponds to a pixel. Then, this grid is
deformed (see Figure 4.2(b) to (c)) steered by image matchesM and regularized by local
deformations. Finally, the dense flow field F̃t→t+Δ is obtained by interpolating the vertices
before and after deformation.

Mathematically, the image deformation process is formulated as an energy optimization
problem over the grid structure. We minimize per image the energy of a data fitting term
weighed with a regularizer:

E(d,R, xt,M) =
∑
k

wfit Efit(dk, xkt ,M) + wreg Ereg(dk, xkt ,Rk), (4.1)

where d denotes the deformed grid fitted to object It+Δ. Following [132], we setwfit = 10
and wreg = 0.1. The data fit term is guided by the matchesM:

Efit(dk, xkt ,M) =
∣∣∣dk−M(xkt )

∣∣∣
2
. (4.2)

For pixel coordinates without an image match,M(xkt ) = xkt is used instead.

As regularizer, the relative rigid rotation between neighboring pixels with rotation ma-
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Figure 4.3: Illustration with four examples of image segments It and It+Δ annotated with point matches,
the computed flow F̃t→t+Δ and the warped images Ĩt+Δ. Note the significant differences between It+Δ and
Ĩt+Δ (bottom row) due to the errors in the point matches. However (It, Ĩt+Δ, F̃t→t+Δ) form a correct triplet.

tricesRkj ∈ R2×2 is used to enforce rigid rotation and translation [131], yielding:

Ereg(dk, xkt ,Rk) =
1
4

4∑
j=1

∣∣∣Rkj
(
xkjt −xkt

)
−
(
dkj−dk

)∣∣∣
2
, (4.3)

where xkjt denotes the j-th neighbor from pixel k and dkj the coordinates after deformation
of xkjt . The four connected pixels to each pixel are used as neighbors.

Equation 4.1 isminimizedwith respect tod andR, resulting in a non-linear least square
problem, which is solved by the iterative Gauss-Newton method [133].

4.3.4 ImageWarping

The dense optical flow field F̃t→t+Δ is obtained by interpolating xt and d. Due to possible
errors introduced by thematching and deformation algorithm, it is only an approximation
of the true field Ft→t+Δ, and hence it does not necessarily transform the object It to the
exact shape of It+Δ.

Togenerate correct triples, imagewarping Ĩt+Δ = W(It, F̃t→t+Δ) is used, seeFigure 4.1.d.
This results in a correctly generated triple (It, Ĩt+Δ, F̃t→t+Δ)*. In Figure 4.3, segmented ob-
jects It and It+Δ are illustratedwith the obtainedoptical flow F̃t→t+Δ and thewarpedobject
Ĩt+Δ, including some matching correspondence errors recovered by the warping process.

4.3.5 Background Generation

To obtain a full frame image pair, an object It and the warped object Ĩt+Δ are projected on
a (static) background image (Figure 4.1.e). This background image is randomly sampled

*Image warping might introduce artifacts due to interpolation used, it is however commonly used, e.g. in
the FlyingChairs dataset [83]
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Algorithm 1 Generate optical flow from a generic video dataset V .
Input: videos V , frame-distance Δ, segmentation method S, texture method T
Output: optical flow datasetF
1: It, It+Δ ← sampled from v ∈ V , with frame-distance Δ # Section 4.4.1
2: It, It+Δ ← from segmentation It and It+Δ with algorithm S # Section 4.4.3
3: M ← image_matching(It, It+Δ)
4: if M is∅: skip frame
5: F̃t→t+Δ ←ARAP deformation(M, It)
6: It ← replace texture of object It with method T # Section 4.4.2
7: Ĩt+Δ ← image warpingW(It, F̃t→t+Δ)
8: It, Ĩt+Δ ← pasting objects It and Ĩt+Δ on random background
9: F ← F + {(It, Ĩt+Δ, F̃t→t+Δ)}

from a set of 8K images of general scenery obtained from Flickr images with a Public Do-
main license, similar to the approach used for the creation of the FlyingChairs dataset [83].
However, in contrast to the FlyingChairs dataset, static backgrounds are used instead of
affine transformed backgrounds.

4.4 Generating the DAVIS-Mask-OpticalFlowDataset

In this section, datasets generated from video frames using the proposed method are ex-
plored. See the pseudo-code in Algorithm 1. The algorithm takes a video dataset V as
input, together with an integer number Δ for the frame distance, a segmentation method
S, and a texture replacingmethodT. CNNs learn a bettermodel when the training set con-
sists of samples with a large variety of textures, motion patterns, and displacements [111].
Hence, the influence of different choices for Δ, S, and T to create datasets are explored.

The DAVIS [112] video dataset is used to generate optical flow datasets. DAVIS con-
tains 6K frames of real imagery with provided segmentationmasks. The generated optical
flow datasets are used to train a FlowNet-S (FNS) model [83]. Evaluation is performed
on a subset of 410 image pairs from the training set of MPI-Sintel [40], coined Sintel-val.
Results are reportedusing the average end-point-errormetric (EPE, lower is better). Theob-
tained results are compared to a FlowNet-Smodel trained on the FlyingChairs [83] dataset
as baseline. This dataset has 22K image pairs of chairs projected on different backgrounds
with corresponding optical flow ground truths. FlowNet-S is chosen since it is fast to train,
thus suitable for extensive experimentation. In Section 4.5, experiments are conducted
with our final dataset using more recent architectures, and more diverse datasets.
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Figure 4.4: Influence of the frame distance (Δ): Increasing the frame distance increases the motion
magnitude (a), and introduces artifacts in the warped objects (b), yet increasing the dataset by adding frame
distances up to Δ = 5 is beneficial for performance(c). Larger frame distances have neglectable influence.

4.4.1 Displacement Variation

To increase the variation in object motion, different frame distances Δ in the video se-
quence are used. Larger Δ reflects motion further in time, resulting in more variation in
the non-rigid motion statistics of the objects. This is reflected by the larger object displace-
ment, see Figure 4.4a, and by the warped objects, see Figure 4.4b. Note, however, that
larger frame distances also introduce artifacts, likely due to errors in the matching stage.

To study the influenceof large framedistances, datasets generatedwithΔ = {1, 2, . . . , 12}
are combined into a single dataset. Despite the increase of training set, the images’ appear-
ances basically stay the same as they are extracted from the same set of videos. Thus, the
performance gain can be attributed to the increased displacement.

The performance is given inTable 4.4c. From these results, it can be derived that increas-
ing the frame distance is, in general, beneficial for EPE error on Sintel-val. We observe some
diminishing gains, especially for Δ > 5. This is attributed to the introduced artifacts in the
warped images. More importantly, the results show that there is no need to strictly match
the distributions of the training and testing sets to achieve the best performance [111]. For
the remaining experiments Δ1-5 is used to generate optical flow, unless stated otherwise.

4.4.2 Texture Variation

Object re-texturing allows for increasing the variation in the datasets appearances, see Fig-
ure 4.5a. Moreover, re-textured objects enforce the network to disentangle semantic (class
specific) information from optical flow information. This is likely to be beneficial for a
generic (class agnostic) optical flow prediction model.

47



4

4. AUTOMATICGENERATIONOFDENSENON-RIGIDOPTICAL FLOW

� �

(a) Appearance variation

Δ5 Sintel-valT SINv SynR ReaR
FC 6.28 7.29 6.92 5.10
Δ1 O 4.20 4.82 4.62 5.50
Δ1-4 O 4.02 4.75 4.42 5.10
Δ1-4 R 3.99 4.61 4.32 4.96
Δ1-4 C 3.86 4.60 4.24 4.98

(b) Performance

Figure 4.5: Re-textured objects: (a) examples of different textures and (b) performance analysis for
different textures. Training with re-textured objects (both R and C) ensures better performance.

To re-texture objects, denoted byT in Algorithm 1, the following is done. After obtain-
ing the flow field, the original texture (O) of It, is replaced by a new random texture (R),
using the segmentation mask. The random texture is taken from the set of general natural
images, used as background images. Then, the corresponding Ĩt+Δ is obtained by warping
the re-textured It, using F̃t→t+Δ. We explore using a re-textured dataset, denoted byR, and
using a combination of original textures with random re-textures, denoted by C.

FlowNet-S is trained on the newly re-textured data (Δ1-4) and its robustness for unseen
textures and displacements is studied. Themodels are evaluated on Δ5 and Sintel-val. The
former has been re-textured with 3 texture types: SynR, synthetic images with repetitive
patterns; ReaR, real images with repetitive patterns; and SINv, images from Sintel-val set,
see examples of the re-textured images in Figure 4.5a.

The results are shown Table 4.5b. We conclude that training with re-textured data (R
or C) is beneficial for good performance on both Δ5 and Sintel-val. The performance dif-
ferences between the different re-textured datasets used in Δ5 show the dependency of the
performance on the test images’ texture. This confirms the hypothesis that the network
needs to be trained with a wide variety of texture types. Hence, for the subsequent experi-
ments, a combination of original-texture and re-textured images (C) is used.

4.4.3 Object Segmentation

In this section, different methods for selecting the object of interest are compared. So far,
the ground truth segmentation masks have been used. Now, the following alternatives are
considered: (1) selecting the entire frame as the object of interest; (2) using tight bound-
ing boxes enclosing the ground-truth segments; (3) using the ground-truth segments; and
(4) using segments fromMaskR-CNN [129], a pre-trained off-the-shelf segmentation net-
work. See Figure 4.6a for examples.
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(a) Segment variations

Training set (Δ1-5-O) Sintel-val
Entire frame (F) 5.69

Bounding boxes (B) 5.16
Ground truth segments (G) 5.06

Mask RCNN (M) 4.91

(b) Performance

Figure 4.6: Object Segmentation: (a) Examples of ground-truth segments (top), bounding boxes (mid-
dle) andMask R-CNN predictions (bottom); and (b) Sintel-val performance. The approximately correct
segments M yield best performance.

Entire-frame deformations include constraints fromboth backgrounds and foreground
objects, which might limit the flexibility and variation in the generated deformation. The
bounding boxes increase the segment sizes by including background parts while keeping
the objects of interest in focus. For Mask R-CNN [129], the available pre-trained model
is used, which is trained on the class labels of the MS-COCO [53] datasets. Due to uncer-
tainties of inference, the Mask R-CNN segments may generate larger regions rather than
strictly focusing on the centred objects like the ground-truth segments. This might result
in creating a large variation in terms of object shapes and sizes.

The results of training FlowNet-S on the data generated using the original textures (Δ1-
5-O), comparing different segmentation methods, are shown in Table 4.6b. From the re-
sults it is concluded that focusing on objects is beneficial wiht the performance of F < B <

G. Surprisingly, the network trained with the dataset using Mask R-CNN segments out-
performs the one using ground truth segments (M > G). This is because Mask R-CNN
segments, in general, aremore varied and covermoreobject types in a scene compared to the
ground truth segments: not only the objects of interest, but also those in the background.
Hence, it provides the network with a larger range of object variations, which shows to
be useful for training. This indicates it is possible to use any real-world in-the-wild videos
with Mask R-CNN segments for training optical flow deep networks. In the subsequent
experiments, datasets using Mask R-CNN (M) are used.

4.4.4 Non-RigidMotion Analysis

The Sintel movie is created using mostly static scenes and moving characters. In this sec-
tion, the performance of the FNS models on non-rigid movements and occluded regions
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FlowNetS LiteFlowNet PWC-Net

Full N-R Occ Full N-R Occ Full N-R Occ

FC 5.09 14.56 12.32 4.32 14.70 12.86 4.01 13.52 11.27
Δ1-5-O-M 4.96 13.88 12.64 4.34 13.59 12.88 3.88 12.59 11.21
Δ1-5-C-M 4.54 13.28 11.82 4.23 13.83 12.79 3.62 11.90 10.57

Table 4.1: Non-Rigid Motion Analysis: Performance on subsets of Sintel-val, using the full image
(F), non-rigid motion (N-R) or occluded regions (Occ), for three different architectures: FlowNet-S (FNS),
LiteFlowNet (LFN), and PWC-Net (PWC). Deep networks trained on our non-rigid motion datasets out-
perform those trained on the FlyingChairs dataset.

is evaluated. Evaluation is performed over (a) foreground objects using the segments pro-
vided by [40]; and (b) occluded regions, defined as those regions which appear in one of
the two input frames only.

Different training sets are compared (FC, Δ1-5-O-M, and Δ1-5-C-M), using FlowNet-
S [83], PWC-Net [109], and LiteFlowNet [108]. The results are shown in Table 4.1. We
conclude that training on our non-rigidmotion datasets outperforms training on the rigid
transformations from the FlyingChairs dataset. This holds especially for non-rigid and
occluded regions in the images. To conclude, non-rigidmotion is a necessity to train robust
CNNs for optical flow prediction.

4.4.5 Training Dataset Size

In this section, the performance is evaluated as a function of the number of images in the
training dataset. This aims to distinguish improvements based on the sheer number of

Figure 4.7: Size of Train-
ing Set: Performance of PWC-
Net [109] trained on differently
sized datasets on Sintel-val. For
Δ1-5-C-M, we include results of
sub-sampled datasets (indicated
in green). Our generated datasets
usingMask R-CNN consistently
outperform the approaches of
training on FlyingChairs, regard-
less of the actual training size.
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annotated training examples, from the improvements based on non-rigid motion and tex-
ture variations. The 55K images from our Δ1-5-C-M dataset are sub-sampled to generate
training sets with 11K, 22K, . . ., 55K examples.

Figure 4.7 shows the results on Sintel-val of PWC-Net trained on these sub-sampled
datasets. It can be observed that the training set size does have an influence on the perfor-
mance. Network trained on Δ1-5-C-M is gradually improving as the size of training data
increases (with 22K being the outlier likely due to sub-sampling effects). The results show
that regardless of size this dataset, training on Δ1-5-C-M performs best.

4.4.6 Discussion

From these extensive, yet initial, analyses of various design choices, we derive that the gen-
erated datasets with non-rigid optical flow fields are well suitable for training CNNs for
optical flowprediction. In thenext section, theΔ1-5-C-Mdataset, generatedusingMaskR-
CNN segments, using original and re-textured objects, is used. Which we coin theDAVIS-
Mask-OpticalFlow (DMO) dataset.

4.5 Experiments

In this section, experiments are conducted to compare models trained on the proposed
DMO dataset to various state-of-the-art baselines and benchmarks.

4.5.1 Experimental Setup

Datasets For most of the experiments, models trained on the FlyingChairs dataset [83]
are used as baseline comparison. This allows to study the effect of the training set on the
performance of different network architectures.

Evaluation is performed on the test-set of MPI-Sintel [40] containing large displace-
ments of non-rigid optical flow. Additional evaluation is performed on the validation split
of the HumanFlow [122], which contains 530 image pairs of non-rigid motion of human
bodies, and on a subset of 50 randomly selected images from the KITTI 2012 [105] and
2015 [110] training set containing real-textures from a self driving car.

As bothMPI-Sintel andHumanFlow contain CGI-rendered images, while KITTI con-
tainsmostly rigidmotion, theQUVA repetition dataset [134] is used to qualitatively evalu-
ate non-rigid motion on real imagery. The dataset consists of video sequences of repetitive
activities with minor camera motion, thus mostly consisting of non-rigid object motions.
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Sintel-test Sintel-test occ HumanFlow KITTI val

final clean final clean 2012 2015

Zero flow - - - - 0.73 28.23 24.03

FN
S FC 8.16 7.17 35.88 34.02 0.63 4.63 7.71

DMO 7.64 6.61 34.98 33.17 0.36 3.53 5.30

LF
N FC 7.89 6.77 38.79 37.28 0.30 2.75 7.61

DMO 7.73 6.50 38.68 36.30 0.26 2.73 6.27

PW
C FC 6.97 5.61 33.58 30.61 0.30 2.22 5.36

DMO 6.62 5.52 31.56 30.00 0.26 1.72 3.18

Table 4.2: Comparison of different models (FNS, PWC, LFN) trained on FC and DMO, evaluated on
Sintel benchmark, Human Flow, and KITTI. The constant zero flow indicates the displacement statistics
of the test sets. For all networks and all evaluations hold that training on non-rigid motion data (DMO)
outperforms training on rigid/affine motion (FC).

Network Architectures Different CNN architectures are compared, namely: (i)
FlowNet-S [83]which is alsoused inSection4.4, (ii) PWC-Net [109] andLiteFlowNet [108]
as recent supervisedmodels, (iii) threeunsupervised architectures, specificallyMFOF[135],
DDFlow [136], and SelFlow [121]. For eachmodel, the standard training settings are used,
including data augmentation and learning schemes as provided by the authors.

4.5.2 Comparison to State-of-the-Art

We compare different state-of-the-art algorithms for optical flow, namely LiteFlowNet
(LFN) [108] andPWC-Net (PWC) [109]. For each network, we compare the performance
between themodels trainedwithDMOdataset to the samemodel trained on FlyingChairs.
The results are evaluated on the MPI-Sintel benchmark server (Sintel-test), the Human-
Flow and KITTI 2012, 2015 datasets. The results are summarized in Table 4.2.

The networks trained with our dataset outperform those trained with FlyingChairs on
all tests. The results on Sintel occluded regions show that the proposed dataset improves
models’ robustness even in the challenging occlusion conditions. The results on Human
Flow show that non-rigid optical flow estimation (e.g. human body movement) benefits
from DMO. In particular, although FNS is well-known for poor performance on small-
displacement data [122], the performance on HumanFlow trained with DMO is close to
that of the other powerful algorithms,whereas FNS trainedonFlyingChairs is close to zero-
flow. This suggests that the weakness of the methods can be improved using the proposed
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Training dataset Sintel-test Sintel-test occ

final clean final clean

MFOF [135] RoamingImages T 8.81 7.23 39.70 36.78
DDFlow [136] FC T 7.40 6.18 39.94 38.05

SelFlow [121] Sintel movie U 6.57 6.56 34.72 38.30
SelFlow-ft [121] Sintel movie→KITTI→ Sintel Ft 4.26 3.74 22.37 22.50

PWC FC T 6.97 5.61 33.58 30.61
PWC FC→ Sintel Ft 6.22 5.38 30.46 29.69

PWC DMO U/T 6.62 5.52 31.56 30.00
PWC DMO→ Sintel Ft 5.86 5.26 29.09 29.75

Table 4.3: Comparison to unsupervised (U), transferred (T) and fine-tuned methods (Ft). PWC trained
on DMO outperforms all the transferred methods and compares favourably to fine-tuned methods after pre-
training on FC. The gap between unsupervised and transferred methods and fine-tuned methods indicate
the necessity of annotated optical flow.

dataset. The results on KITTI val set indicate how the networks perform on real-world
texture images. Although KITTIs contain mostly rigid motion (cars moving on streets)
with sparse resolution, the network trainedwith our dataset still outperforms those trained
with FlyingChairs.

We conclude that optical flowCNNs benefit from training on natural textures and non-
rigid movements, as generated by our dense optical flowmethod.

4.5.3 Comparison to unsupervised and finetuned methods

In this section, wemeasure the ability of our datasetDMO to transfer to different domains.
To this end, we compare PWC trained on our dataset with unsupervised methods such
as MFOF [135], DDFlow [136], and SelFlow [121]. We train the network on a dataset
generated in an unsupervised way, without using any ground truth optical flow from the
test domain, i.e. the MPI-Sintel dataset. We also show the results of finetuning on the
Sintel train set with results reported by finetuned state-of-the-art methods. The results are
shown in Table 4.3.

For the transferredmethods, PWCtrained on our dataset outperforms the others, show-
ing the transferrability of our method. For the finetuning methods, SelFlow performs the
best. Note its improvement of the supervised results (Ft) over the unsupervised (U) and
how it is mainly trained on Sintel-related data. This shows the necessity of having anno-
tated data suited for the target domain.
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� �

(a) LiteFlowNet (b) PWC-Net

Figure 4.8: Qualitative results on QUVA dataset [134] for LFN (a) and PWC (b), trained on FC (midlle)
and DMO (bottom). The networks trained using our pipeline capture the non-rigid motion of objects in
the scenes with higher detail and delineation. (Best viewed in color.)

4.5.4 Performance on real-world images

As there are currently no optical flow benchmarks with real-texture and non-rigid mo-
tion, the QUVA repetition dataset [134] is employed to qualitatively demonstrate the ef-
fectiveness of our generated dataset. Figure 6.6 shows the optical flow prediction by Lite-
FlowNet (top) and PWC-Net (bottom) trained with FlyingChairs and our DMO. The
models trained with our non-rigid flow set capture better the objects’ delineation and de-
tails, especially fornon-rigidmovements ofhumanbodyparts indicatedby the color changes.

4.6 Conclusions

In this chapter,we introduced apipeline to generate densely annotatedoptical flowdatasets
from videos to train supervised deep networks for optical flow.

Extensive experimental results show that it is possible to create a large amount of data
with optical flow ground truths from real-world videos using off-the-shelf segmentation
algorithms (e.g. MaskR-CNN). Increasing of training set size, in general, improvesCNNs
performance regardless of architectures. The generated data from the proposed framework
shows superiority over the commonly used FlyingChairs for pre-training networks.
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55
Novel View Synthesis from Single Images via

Point Cloud Transformation

Inthis chapter the argument is made that for true novel view synthesis of an
object, where the object can be synthesized from any viewpoint, an explicit 3D shape
representation is desired. Ourmethod captures the object’s geometry by reconstruct-

ing a partial point cloud from a predicted depth map, which can be freely rotated into the
target viewpoint and projected on the image space. This coarse image is completed by a
generative adversarial network to obtain the dense target view. The image completion and
depth prediction networks can be trained end-to-endwithout depth supervision. The ben-
efit of using point clouds as an explicit 3D shape for novel view synthesis is experimentally
validated on the 3D ShapeNet benchmark.

5.1 Introduction

Novel view synthesis infer the appearances of an object from unobserved points of view.
The synthesis of unseen views of objects could be important for image-based 3D object
manipulation [137], robot traversability [138], or 3D object reconstruction [139]. Gen-
erating coherent views of objects’ unseen parts requires non-trivial understanding of the
object’s inherent properties such as (3D) geometry, texture, shading, and illumination.

Different algorithms make use of provided source images in different ways. Model-
based approaches use similar-look open stock 3D models [137], or through user interac-
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θs→t

backward

forward

Source image

Target image

Completed targetCoarse target
Image-completionDepth-prediction

Predicted depth

warping

warping

networknetwork

Figure 5.1: Overview of the proposed model for training and inference. From a single input image, the
pixel-wise depth map is predicted. The depth map is subsequently used to compute a coarse novel view
(forward warping), and trained by making use of backward warping (from the target view back to the source
view). The model is trained end-to-end.

tive construction [140, 47, 141]. Image-based methods [139, 142, 143, 144, 145] assume
an underlying parametric model of object appearances conditioned on viewpoints and try
to learn it using statistical frameworks. Despite their differences, both approaches use 3D
information in predicting object new views. The former imposes stronger assumptions
on the full 3D structure and shifts the paradigm to obtain the full models, while the latter
captures the 3D information in latent space to cope with (self) occlusion.

The principle is that the generation of a new viewof an object is composed of (1) relocat-
ing pixels in source images that will be visible in the target view to the corresponding posi-
tions, (2) removing the pixels that will be occluded, and (3) adding disoccluded pixels that
are not in the source but will be revealed in the target view [143]. With the advance of con-
volution neural networks (CNNs) and generative adversarial networks (GANs), [142, 143,
144] show that (1) and (2) can be done by learning an appearance flow field that “flows”
pixels from a source image to the corresponding positions in the target view, and (3) can
be done by a completion network with an adversarial loss.

In this chapter, we leverage the explicit use of geometric information and show that
objects’ geometry provides the natural basis for the problem of novel view synthesis. We
argue that (1) and (2) can be done in a straightforward manner by having access to the
geometry of the objects: the appearance flows [142, 143, 144] which associate pixels of
the source view to their positions in the target view are, indeed, the projection of the 3D
displacement of objects’ points before and after transformation; occluded regions can be
identified based on the surface normals’ orientation and the view directions. The same
arguments can also be extended naturally to multiple input images.

In contrast to geometry-based methods, the proposed approach does not require 3D
supervision. Themethod predicts a depthmap in a self-supervisedmanner by formulating

56



5

5.2. RELATEDWORK

the depth estimation problem in the context of novel view synthesis. The predicted depth
is used to partly construct the target views and to assist the completion network.

The main contributions of this chapter are: (1) a novel methodology for novel view
synthesis using explicit transformations of estimated point clouds; (2) an integratedmodel
combining self-supervised monocular depth estimation and novel view synthesis, which
can be trained end-to-end; (3) natural extensions tomulti-view inputs and full point cloud
reconstruction from a single image; and (4) experimental benchmarking to validate the
proposedmethod, which outperforms the current state-of-the art for novel view synthesis.

5.2 RelatedWork

5.2.1 Geometry-based view synthesis

View synthesis via 3D models Full models (textured meshes or colored point clouds)
of objects or scenes are constructed from multiple images taken from various viewpoints
[146, 147, 148] or are given and aligned interactively by users [137, 141]. The use of 3D
models allows for extreme pose estimation, re-texturing and flexible (re-)lighting by apply-
ing rendering techniques [149, 148]. However, obtaining complete 3D models of objects
or scenes is a challenging task in itself. Therefore, these approaches require additional
user input to identify objects boundaries [140, 47], select and align 3D models with im-
age views [137, 141], or use simple textured-mapped 3-planar billboard models [150]. In
contrast, the proposedmethodmakes use of objects partial point clouds constructed from
a given source view and does not require a predefined (explicit) 3Dmodel.

View synthesis via depth Methods using 3D models assume a coherent structure be-
tween the desired objects and the obtained 3D models [47, 137]. To relax the need of
obtaining full 3D models, depth images are used as an intermediate representation to cap-
ture hidden surfaces from one ormultiple viewpoints. [151] proposes to use layered depth
images, [152] creates 3D plane sweep volumes by projecting images onto target viewpoints
at different depths, [153] uses multi-plane images at fix-distances to the camera, and [154]
estimates depth probability volumes to leverage depth uncertainty in occluded regions.

In this chapter, we estimate depth directly from monocular views to construct the ob-
jects’ partial point clouds. Self-supervisedmonocular depth estimation is an active research
topic [155, 156, 157, 158, 159]. We show that self-supervised depth prediction and novel
view synthesis can be trained in an end-to-end system.
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Figure 5.2: Image formation with pinhole camera model: the point P in the 3D space forms the image p
on the image plane.

5.2.2 Image-based view synthesis

Requiring explicit geometrical structures of objects or scenes as a precursor severely limits
the applicability of amethod. With the advance of neural networks (CNNs), generative ad-
versarial networks [160] (GANs) achieve impressive results in image generation, allowing
view synthesis without explicit geometrical structures of objects or scenes.

View synthesis via embedded geometry Zhou et al. [142] proposes learning a flow
field that maps pixels in input images to their corresponding locations in target views to
capture latent geometrical information. [145] learns a volumetric representation in a trans-
formable bottleneck layer, which can generate corresponding views for arbitrary transfor-
mations. The former explicitly utilizes input (source) image pixels in constructing new
views, either fully [142], or partly with the rest being filled by a completion network [143,
144]. The latter explicitly applies transformations on the volumetric representation in la-
tent space and generates new views by means of pixel generation networks.

The proposed method takes the best of both worlds. By directly using object geome-
try the source pixels are mapped to their target positions based on given transformation
parameters, hence making the best use of the given information synthesizing new views.
Our approach is fundamentally different from [143]: we estimate the object point cloud
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using self-supervised depth predictions and obtain coarse target views frompurely geomet-
rical transformations, while [143] learns mappings from input images and ground truth
occluded regions to generate coarse target views using one-hot encoded vectors.
View synthesis directly from image Since the introduction of image-to-image trans-
lation [161], there is a paradigm shift towards pure image-based approaches [139]. [162]
synthesizes bird view images from a single frontal view image, while [163] generates cross-
views of aerial and street-view images. The networks can be trained to predict all the views
in an orbit from a single-view object [164, 159], or generate a view in an iterative man-
ner [165]. Additional features can be embedded such as view-independent intrinsic prop-
erties of objects [166]. In this chapter, we employGANs to generate complete views,which
is conditioned on the geometrical features and the relative poses between source and target
views. Our approach can be interpreted as a reverse and end-to-end process of [159]: we es-
timate objects’ arbitrary newviews via point clouds constructed from self-supervised depth
maps, while [159] predict objects’ fixed orbit views for 3D reconstruction.

5.3 ProposedMethod

5.3.1 Point-Cloud based Transformations

The core of the proposed novel view synthesis method is to use point clouds for geomet-
rically aware transformations. Using the pinhole camera model as shown in Figure 5.2
and known camera intrinsicsK, the point cloud can be reconstructed when the pixel-wise
depth map (D) is available. The camera intrinsics can be obtained by camera calibration,
yet for the synthetic data used in our experiments, K is given. A pixel on the source im-
age plane ps = [u v 1]� (using homogeneous coordinates), corresponds to a point
Ps = [X Y Z]� in the source camera space:

Ds p�s = KP�
s P�

s = K−1 Ds p�s (5.1)

Rigid transformations can be obtained bymatrix multiplications. The relative transforma-
tion to the target viewpoint from the source camera, is given by:

θs→t =

[
R t
0 1

]
(5.2)

where R denotes the desired rotation matrix and t the translation vector. Points in the
target camera view are given by Pt = θs→tPs. This can also be regarded as an image-based
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θs→t

Forward warping

Backward warping

Pixel indices Source depth

Target image

Source image Target view

Source view

bilinear
(color coded) sampling(color coded)

Figure 5.3: Illustration of the forward and backward warping operation of point clouds. The forward
warping is used to generate a coarse target view, while the backward warping is used to reconstruct the source
view from a target view for self-supervised depth estimation.

flow field φ : R2 → R2 parameterized by θs→t (c.f . [142, 143, 144]). The flow field
φ(ps; θs→t) returns the homogeneous coordinates of the pixels in the target image for each
pixel in the source image:

φ(ps; θs→t) = K θs→t K−1 Dsp�s (5.3)

By observing that φ(ps; θs→t) = Dtpt, the Cartesian pixel coordinates in the target view
can be extracted. The advantage of the flow field interpretation is that it provides a direct
mapping between the image planes of the source view and the target view.

Forward warping The flow field is used to generate the target view from the source:

Ĩt(φ(ps; θs→t)) = Is(ps). (5.4)

The resulted image is sparse and contains missing details due to discrete coordinates and
occlusion (see Figure 5.3 top-right). The image is completed by a network (Section 5.3.2).

Backwardwarping Theflowfield is used to generate the source view from the target:

Ĩs(ps) = It(φ(ps; θs→t)). (5.5)

The process assigns a value to every pixel (u, v) in Ĩs resulting in a dense image, as illus-
trated in Figure 5.3 (bottom-right). The generated source viewmay contain artifacts due to
(dis)occlusion in the target view. To sample φ(ps; θs→t) from It, a differentiable bi-linear
sampling layer [167] is used. The generated source view is used for self-supervised monoc-
ular depth prediction (Section 5.3.3).
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5.3.2 Novel View Synthesis

The point-cloud-based forward warping relocates the visible pixels of the object in the
source view to their corresponding positions in the target view. For novel view synthesis,
however, two more steps are required: (1) obtaining the target coarse view by discarding
occluded pixels, and (2) filling in the pixels that are not seen in the source view.

Coarse view construction The goal is to remove the visible pixels in the source im-
age which will be occluded in the target view. To this end, pixels that have surface nor-
mals (after transformation) pointing away from the viewing direction are removed, simi-
larly to [143]. Surface normals are obtained from normalized depth gradients.

An illustration of the coarse view construction is shown in Figure 5.4 for different target
views. The first rowdepicts the target views, the second row indicates the visible parts from
the input image (third column). The third and fourth row show the coarse view with and
without occlusion removal (or backface culling). Finally, the fifth row shows an enhanced
version of the coarse view, where the object is assumed to be left-right symmetric [143].
The proposedmethod directly identifies and removes occlusion pixels from the input view
using estimated depth, which contrasts to [143], where ground truth visibility mask are
required for each target view to train a visibility prediction network.

View completion The obtained coarse view is already in the target viewpoint, but it
remains sparse. To synthesize the final dense image, an image completion network is used.

The completion network uses the hour-glass architecture [168]. Following [143], we
concatenate the depth bottleneck features and embedded transformation to the comple-
tion network bottleneck. By conditioning the completion network on the input features
and the desired transformation θs→t, the network can fix artifacts and errors due to esti-
mated depth and cope better with extreme pose transformations, i.e. when coarse view
image is near empty (e.g. columns 9-11 in Figure 5.4).

The image completion network is trained in a GAN-manner by using a generator G, a
discriminator D, an input image Is and a target image It. The combination of losses that
are used is given by:

LD = (D(Is)− 1)2 +D(G(Is)))2, Discriminator loss (5.6)

LG = [1− SSIM(It,G(Is))] + ‖It − G(Is)‖1 , Generator loss (5.7)

LPerc =
∥∥FD

It −FD
G(Is)

∥∥
2 +

∥∥FVGG
It −FVGG

G(Is)
∥∥
2, Perceptual loss (5.8)

where the perceptual loss uses FD and FVGG to denote features extracted from image
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Figure 5.4: Image coarse views for different target viewpoints. The input image is depicted in the third
column (red box). From top to bottom: (1) target views, (2) source region visible in each target viewpoint,
coarse view (3) naive (4) with occlusion removal, and (5) with occlusion removal and symmetry.

It and G(Is) from the discriminator network and pre-trained VGG network respectively,
c.f . [169]. SSIM is the structural similarity index measure, see Section 5.4.

The total loss is given by:

Lc = w1LD + w2LG + w3LPerc, (5.9)

where w denotes the weighting of the losses (w1 = 1,w2 = 100, and w3 = 100, c.f . [143]).

5.3.3 Self-supervisedMonocular Depth estimation

The discussion so far has assumed that pixel-wise depth maps are available. In this section,
the method used to estimate depth from a single RGB image is detailed. In order to make
theminimum assumption about the training data, self-supervisedmethods are considered,
which do not require ground-truth depth [155, 156, 157, 158, 159].

For the depth prediction an encoder-decoder network with bottleneck architecture is
used, similar to [158]. The network is optimised using a set of (reconstruction) losses be-
tween the source image Is and its synthesized version Ĩs, using the backwardwarping, Equa-
tion (5.5), from a second (target) image It and the predicted depth map. The underlying
rationale is that a more realistic depth map will have a lower reconstruction loss.

The losses are as follows:

62



5

5.4. EXPERIMENTS

Lp
(
Is, Ĩs

)
=

α
2
[
1− SSIM

(
Is, Ĩs

)]
+ (1− α)

∥∥Is − Ĩs
∥∥
1 , Photometric loss (5.10)

Ls(d) = |∂xd| e−|∂xIs| +
∣∣∂yd

∣∣ e−|∂yIs|, Smoothness loss (5.11)

Ld
(
Is, Ĩs, d

)
= μLp

(
Is, Ĩs

)
+ wdLs, Total loss (5.12)

where α = 0.85, wd = 10−3, d = D
D is the mean-normalized inverse depth, and μ is an

indicator functionwhich equals 1 iffLp(Is, Ĩs) < Lp(Is, It), see [158] formore details. The
smoothness loss [157] encourages nearby pixels to have similar depths, while the artifacts
due to (dis)occlusion are excluded by the per-pixel minimum-projection mechanism.

5.4 Experiments

In this section, theproposedmethod is analysedon the3DShapeNetbenchmark including
an ablation study and comparrison to state-of-the-art.

Dataset Weuse theobject-centered car andchair images rendered fromthe3DShapeNet
models [39] using the same render engine* and set up as in [142, 143, 144, 145]. Specif-
ically, there are 7497 car and 698 chairmodels with high-quality textures, split by 80%/20%
for training and test. The images are rendered at 18 azimuth angles (in [0, 340], 20◦-separation)
and 3 elevation angles (0◦, 10◦, 20◦). Input and output images are of size 256× 256.

Metrics Weevaluate the generated images using the standardL1 pixel-wise error (nor-
malized to the ranged [0, 1], lower is better) and the structural similarity index measure
(SSIM) [170] (value range of [−1, 1], higher is better). L1 indicates the proximity of pixel
values between a completed image and the target, while SSIMmeasures the perceived qual-
ity and structural similarity between the images.

Baseline We compare the results of our method with the following state-of-the-art
methods: AFN [142], TVSN [143], M2NV [144], and TBN [145].

5.4.1 Initial Experiments

Comparison to image-based completion In this section,we compare the intermediate
views generated by the forward warping using estimated point clouds and those by image-
based flow field prediction by DOAFN [143] andM2NV [144]. For this experiment, the
coarse view after occlusion removal and left-right symmetric enhancements are used. The

*The specific render engine and setup is to guarantee fair comparison with reported methods as none of
the authors-provided weights perform at the similar level on images rendered with different rendering setups.
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(a) Coarse vs Completed

Coarse view Completed view

L1 (↓) SSIM (↑) L1 (↓) SSIM (↑)

DOAFN [143] .220 .876 .121 .910
M2NV [144] .226 .879 .154 .906
Ours .203 .882 .118 .924

(b) Ablation study

LS PL Sym IC SL L1 (↓) SSIM (↑)

� � .118 .924
� � � .101 .939
� � .103 .939
� � .107 .933
� � � � .097 .939
� � � � � .097 .942

Table 5.1: Quality of coarse and completed view (a) and ablation study (b). The proposed transforma-
tion within estimated point clouds generates better coarse images over image-based predicted flow fields.
Subsequently, the completed view quality is improved. The ablation study shows the best results are ob-
tained by using LSGAN (LS), perceptual loss (PL), symmetry (Sym), bottleneck inter-connection (IC), and
SSIM loss (SL).

image completion network is the basis variant, using DCGAN, without bottleneck inter-
connections. The results are shown in Table 5.1a. The transformation of estimated point
clouds provides coarse views which are closer to the target view, and these help to obtain a
higher quality of completed views.

Ablation Study We analyze the effects of the different component of the proposed
pipeline. The results are shown in Table 5.1b. The use of the LSGAN loss shows a relative
large improvement over the traditional DCGAN. The drop of performance by removing
symmetry assumption shows the importance of prior knowledge on target objects, which
is intuitive. The inter-connection from the depth network and the embedded transforma-
tion to the completion network allow the model to not rely solely on intermediate views.
This is important for overcoming errors and artifacts which occur in the coarse images (due
to inevitable uncertainties in depth prediction) and generate in general higher quality im-
ages. The SSIM loss, first employed by [145], shows improvement in SSIMmetric, which
is intuitive as training objectives are closer to evaluation metrics.

5.4.2 Comparison to State-of-the-Art

In this section, the proposedmethod is comparedwith state-of-the-artmethods. Thequan-
titative results are shown in Table 5.2. The proposed method performs consistently per-
forms (slightly) better on both evaluationmetrics for both types of objects. The qualitative
results are shown in Figure 5.5 where challenging cases are shown in the last 2 rows. No-
tice the better ability in retaining objects’ textures (such as color patterns and texts on cars)
of methods that explicitly use input pixel values in generating new views to that of TBN.
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Input TVSN M2NV TBN Ours Target

Figure 5.5: Qualitative comparisons of synthesized cars (top) and chairs (), given a single input image
(first column) and a given target view (last column). The last two rows show a more challenging examples.
The proposed method captures better the geometry of the object and the fine (texture) details.
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Methods cars chairs

L1 (↓) SSIM (↑) L1 (↓) SSIM (↑)

Same elevation
AFN [142] .148 .877 .229 .871
TVSN [143] .119 .913 .202 .889
M2VN [144] .098 .923 .181 .895
TBN [145] .091 .927 .178 .895

Ours .096 .945 .175 .914

Cross-elevation
TBN .199 .910 .215 .902
Ours .122 .934 .207 .905

Table 5.2: Quantitative comparison with state-of-the-art methods on novel view synthesis: our method
consistently performs (slightly) better than the other methods for both categories where target views have
the same or different elevation angles with input views.

The results of cars are constantly higher than that of chairs due to the intricate structures
of chairs. However, by having access to object geometry, geometrical assumptions such as
symmetry and occlusion can be applied directly to intermediate views (instead of having to
learn from annotated data c.f . [143]), improving the results for near-to symmetry targets.

Table 5.2 also shows the evaluation when target viewpoints are from different elevation
angles. Methods suchAFN,TVSN, andM2NVencode transformation as one-hot vectors
and thus, are limited to operate within a pre-defined set of transformations (18 azimuth
angles, same elevation). This is not the case for our method and TBN which apply direct
transformation. We use the same azimuth angles as in the standard test set while randomly
sample new elevation angles for input images in (0◦, 10◦, 20◦). The results are shownwith
networks trained with the regular fixed-elevation settings. The new transformations pro-
duces different statistics from what the networks have been trained, resulting in a perfor-
mance drop for bothmethods. Nevertheless, the proposedmethod can still maintain high
quality image synthesis.

5.4.3 Multi-View Synthesis and Point Cloud Reconstruction

Multi-view inputs The proposed method can be naturally extended to use multi-view
inputs as follows: for each image depth is predicted independently and combined into a
single point cloud. The resulting coarse target image will be denser when more images are
used, and is passed through the image completion network.
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No.
views

Coarse Final

L1 (↓) SSIM (↑) L1 (↓) SSIM (↑)

1 .203 .882 .090 .945
2 .188 .888 .089 .945
4 .152 .906 .085 .946
8 .111 .907 .084 .947

Table 5.3: Performance by extending single-view-trained networks for multi-view inputs.

Figure 5.6: Top 360◦-views generation from single input images (first column), bottom point cloud
reconstruction using estimated depths of each generated views. Depth estimation trained on real images can
perform well on synthesized ones.

In this experiment, the model trained for single-view prediction is used and evaluated
using multiple (1 to 8) input images. The results in Table 5.3 show that the quality of the
coarse view increases, as expected, when more input images are used and hence the point
clouds are denser. Surprisingly, however, the image completion network only marginally
improves, indicating that the coarse view contains enough information for the image com-
pletion network to synthesis a high quality target image.

Point cloud reconstruction In this final experiment, the aim is to reconstruct a full
dense point cloud froma single image, using themodels trained for novel view synthesis. In
order to do so, 360◦-views are generated froma single viewof an object, see Figure 5.6 (top).
Each of these views are fed to the depth estimation network and the obtain estimated depth
is used to generate a partial point cloud. These point clouds are stitched together, using
corresponding transformations, resulting in a high quality dense point cloud, as shown in
Figure 5.6 (bottom).
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Input Target Ours Input Target Ours Input Target Ours

Figure 5.7: Qualitative results on real-imagery ALOI [171] dataset. The inputs and targets are shown
with provided object masks, while the synthesized images are with predicted masks. The completion net-
work does not need to be finetuned, yet provide competent results.

5.4.4 Results on real-world imagery

We apply the trained car model to the car images of the real-imagery ALOI dataset [171],
consisting of 100 objects, captured at 72 viewing angles. We use 4 cars for fine-tuning only
the depth network, which requires no ground truths, while the image-completion network
is left untouched. The quantivative resuls on the remaining 3 cars are shown in Figure 5.7.

5.5 Conclusion

In this chapter partial point clouds are estimated from a single image, by a self-supervised
depth prediction network and used to obtain a coarse image in the target view. The final
image is produced by an image completion network which uses the coarse image as input.
Experimentally the proposed method outperforms any of the current SOTAmethods on
the ShapeNet Benchmark on novel view synthesis. Qualitative results show high quality
and dense point clouds, obtained froma single image, by synthesizing and combining 360◦

views. Based on these results, we conclude that point clouds are a suitable, geometry aware
representation for true novel view synthesis.
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66
Multimodal Synthetic Dataset of

Enclosed Gardens

Large-scale multimodal datasets for outdoor scenes aremostly designed
for urban driving problems. The scenes are highly structured and semantically
different from scenarios seen in nature-centered scenes such as gardens or parks.

To promote machine learning methods for nature-oriented applications, such as agricul-
ture and gardening, we propose the multimodal synthetic dataset for Enclosed garDEN
scenes (EDEN). The dataset features more than 300K images captured from more than
100 garden models. Each image is annotated with various low/high-level vision modali-
ties, including semantic segmentation, depth, surface normals, intrinsic colors, and optical
flow. Experimental results on the state-of-the-art methods for semantic segmentation and
monocular depth prediction, two important tasks in computer vision, show positive im-
pact of pre-training deep networks on our dataset for unstructured natural scenes. The
dataset and related materials will be available at https://lhoangan.github.io/eden.

6.1 Introduction

Synthetic data have been used to study a wide range of computer vision problems since the
early days [113, 172, 173]. Compared to real-world imagery (RWI), computer-generated
imagery (CGI) data provides allows for less expensive andmore accurate annotation. Since
the emergence of deep learning, synthetic datasets using CGI have become essential due
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RGB Semantics Depth
Surface
normal

Flow
forward

Flow
backward Diffuse Translucency Shading

Figure 6.1: An overview of multiple data types provided in the dataset. The dataset includes data for
both low- and high-level tasks such as (stereo) RGB, camera odometry, instant and semantic segmentation,
depth, surface normal, forward and backward optical flow, intrinsic images (albedo, shading for diffuse
materials, translucency)

to the data-hungry nature of deep learning methods and the difficulty of annotating real-
world images. Most of the large-scale RWI datasets (with more than 20K annotated data
points) are focusingonhigher-level computer vision tasks such as (2D/3D)detection, recog-
nition, and segmentation [53, 54, 174, 175, 176, 177]. In contrast, datasets for low-level
image processing such as optical flow, visual odometry (KITTI [105, 110]) and intrinsic
image decomposition (MIT [56], IIW [59], SAW [178]) are limited in the number of sam-
ples (around 5K annotated images).

CGI-based synthetic datasets [18, 19, 20, 40, 55, 123] provide more and diverse anno-
tated modalities. High quality game data can be extracted from the game pixel shaders
to train low-level vision tasks such as optical flow, visual odometry, and intrinsic image
decomposition. The continuous progress of computer graphics and video-game industry
results in improved photo-realism in render engines. The use of physics-based renderers
facilitates the simulation of different lighting conditions (e.g. morning, sunset, nighttime).

Most of the existing datasets focus on car driving scenarios and are mostly composed of
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simulations of urban/suburban scenes [19, 18, 123, 20]. City scenes are structured contain-
ing objects that are geometrically distinctive with clear boundaries. However, natural or
agriculture scenes are often unstructured. The gaps between them are large and required
distinctive attentions. For example, there are only trails and no drive ways nor lane marks
for travelling; bushes andplants are deformable andoften entangled; obstacles such as small
boulders may cause more trouble than tall grass.

To facilitate the development of computer vision and (deep)machine learning for farm-
ing and gardening applications, which involve mainly unstructured scenes, in this chap-
ter, we propose the synthetic dataset of Enclosed garDEN scenes (EDEN), the first large-
scale multimodal dataset with >300K images, containing a wide range of botanical ob-
jects (e.g. trees, shrubs, flowers), natural elements (e.g. terrains, rocks), and garden objects
(hedges, topiaries). The dataset is created within the TrimBot2020 project* for gardening
robots, and have pre-released versions used in the 3DRMS challenge [179] and in several
work [125, 179, 25].

In contrast toman-made (structured) objects in urban scenarios (such as buildings, cars,
poles, etc.), the modelling of natural (unstructured) objects is more challenging. Natural
objects appear with their own patterns and shapes. Rendering techniques using rotating
billboards of real photos may provide realistic appearances, but lack close-up geometrical
features. Although synthetic datasets and video-gamesmayoffer natural objects and scenes,
theyoften comewith generic labels (e.g. tree, grass, and simple vegetation), since their focus
is on the gaming dynamics.

Therefore, objects in our dataset are developed using high-fidelity parametric models
and CADs created by artists to obtain natural looking scenes. The object categories are
selected for the purpose of gardening and agricultural scenarios to include a large variety
of plant species and terrain types. The dataset contains different lighting conditions to
simulate the intricate aspects of outdoor environments. The different data modalities are
useful for both low- and high-level computer vision tasks.

In addition to the new dataset itself, we provide analyses and benchmarks of the dataset
on state-of-the-art methods of two important tasks in computer vision, namely semantic
segmentation and depth prediction.

* http://trimbot2020.webhosting.rug.nl/
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6.2 RelatedWork

6.2.1 Real-imagery datasets

To accommodate the emergence of deep learning and its data-demanding nature, many ef-
forts have been spent on creating large-scale generic datasets, starting with the well-known
ImageNet [54],COCO[53], andPlaces [180]. These are real-world imagery (RWI)datasets
with more than 300K annotated images at object and scene-level. Also in the domain of
semantic segmentation, there are a number of datasets available such as ADE20K [174]
(20,210 images, 150 categories) and Pascal-Context [181] (10,103 images, 540 categories).

Annotation is expensive. Lower-level task annotation is even more expensive. In con-
trast to the availability of large datasets for higher-level computer vision tasks, there are
only a few RWI datasets for low-level tasks such as optical flow, visual odometry, and
intrinsic image decomposition due unintuitive data annotation. Middlebury [182] and
KITTI [105, 110] are the only datasets providing optical flow for real-world images, yet too
small to train a deep network effectively. For intrinsic image decomposition, theMIT [56]
dataset provides albedo and shading ground truths for only 20 objects in controlled light-
ing conditions, while IIW [59] and SAW[178] provide for up to 7K in-the-wild and indoor
images. Indoor-scene datasets [176, 177, 183, 184] provide a larger number of images (up
to 2.5M) and with more modalities (such as depth) than generic datasets. However, their
goal is to provide data for 3D (higher-level) indoor computer vision tasks.

Outdoor scenes are subject to changing imaging conditions, such as lighting, viewpoint,
occlusion, and object appearance, resulting in annotation difficulties. A number of meth-
ods are proposed focusing on scene understanding for autonomous driving [101, 105, 110,
175, 185, 186]. However, these datasets are limited in number of images and/or the num-
ber modalities. Mapillary [175, 187] is the most diverse dataset with varying illumination
conditions, weather, and seasonal changes. Their focus is on semantic segmentation and
place recognition. Large-scale multimodal datasets are restricted to synthetic data.

6.2.2 Synthetic datasets

Computer vision research uses synthetic datasets since the early days to study low-level
tasks, e.g. optical flow [113, 172, 173]. Synthetic data provide cheaper and more accurate
annotations. It can facilitate noise-free and controlled environments for otherwise costly
problems [188, 189] or for intrinsic understanding [190] and proof of concept [145, 164].

Obviously, the quality of synthetic data and annotation depends on the realism ofmod-
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Figure 6.2: Sample tree models (top: tree stems, bottom: with leaves) for various tree species

elling and rendering algorithms. The development of computer graphic techniques has led
tophysics-based render engines and the improvementofphoto-realistic computer-generated
imagery (CGI). SYNTHIA [19] and Virtual KITTI [18] simulate various daylight condi-
tions (morning, sunset), weather (rain, snow), and seasonal variations (spring, summer, fall,
winter) for autonomous (urban)drivingdatasets. Datasets obtained fromvideo-games [123,
20, 191] and movies [40, 55] show adequate photo-realism. These datasets provide not
only dense annotations for low and high-level tasks, but also multi-view images, different
illumination/weather/seasonal settings. They have proven useful for training robust deep
models under different environmental conditions [123, 20].

However, datasets for outdoor scenes focus mostly on either generic or urban driving
scenarios. Theymainly consist of scenes containingman-made (rigid) objects, such as lane-
marked streets, buildings, vehicles, etc. Only a few datasets contain (non-rigid) nature en-
vironments (e.g. forests or gardens [179, 192]).

CGI-based datasets rely on the details of object models, and computer-aided designed
(CAD) model repositories, such as ShapeNet [39], play an important role in urban driv-
ing datasets [19, 18]. However, the models usually include rigid objects with low fidelity.
Others focus on capturing the uniqueness of living creatures, such as humans [193, 194],
and trees [195, 196, 197] to generate highly detailed models with realistic variations. Syn-
thetic garden datasets have been used in [125, 179, 25], albeit these datasets are relatively
small and have just one or twomodalities and are not all publicly available. In this chapter,
we use different parametric models, e.g. [195], to generate different botanical objects in
an garden. We create multiple gardens with different illumination conditions, and extract
multi-modal data (including RGB, semantic segmentation, depth, surface normals etc.)
from each frame, yielding over 300K garden frames, which we will make publicly available.
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Figure 6.3: Sample models for hedges (top) and topiaries (bottom). The bushes can be generated with
various sizes, leaf colors, and internal stem structures.

6.3 Dataset Generation

We create synthetic gardens using the free and open-source software of Blender†, and ren-
der using the physics-based Cycles render engine. Each garden consists of a ground with
different terrains and random objects (generated with random parameters or randomly
chosen from a pre-designedmodels). Themodelling details of each component object and
the rendering settings are presented in the following sections.

6.3.1 Modelling

To expand the diversity of objects and scenes, we propose to combine parametric and pre-
built models in the generation process.

Trees Weuse the treeparametricmodel described in [195], implementedby theBlender
Sapling Add-on ‡. A tree is constructed recursively from common predefined tree shapes
(conical, (hemi-)spherical, (tapered) cylindrical, etc.) with the first level being the trunk.
The parameters define the branch features such as length, number of splits, curvatures,
pointing angles, etc., each with a variation range for random sampling. Leaves are also de-
fined in a similar manner as stems, besides a fractional value determining their orientation
to simulate phototropism. The model can generate different tree species such as quaking
aspens, maples, weeping pillows, and palm trees. We use the parameter presets provided in
the sampling add-on and Arbaro‡ (Figure 6.2). Totally there are 19 common tree species.

Bushes Hedges and topiaries are generated by growing an ivy adhering to a rectan-
gular or spherical skeleton object using the Ivy Generator‡, implemented by the Blender
IvyGen add-on‡ (Figure 6.3). An ivy is recursively generated from a single root point by
forming curved objects under different forces including a random influence to allow over-

†blender.com, GPL GNUGeneral Public License version 2.0
‡See Section 6.5 for the reference link
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Figure 6.4: Example tiles of different terrain types: grass with weed (top), gravel, pavement, pebble stones,
dirt (bottom). The grass and weed species are chosen and combined randomly.

growing, an adhesion force to keep it attached to the trellis, a gravity pulling down, and
an up-vector simulating phototropism. The add-on is known for creating realistic-looking
ivy objects (Figure 6.3). We use more than 20 leaf types with different color augmentation
for both topiaries and hedges.

Landscapes and terrain The landscape is created from a subdivided plane using a
displacement modifier with the Blender cloud gradient noise, a representation of Perlin
noise [198]. The modifier displaces each sub-vertex on the plane according to the texture
intensity, creating the undulating ground effect. The base ground is fixed at 10x10 square
meters, on which are paved the terrain patches of 1x1 square meter. Each patch is assigned
to one of the terrain types, including grass, pebble stones, gravels, dirt and pavement.

The grass is constructed using Blender particle modifier which replicates a small num-
ber of elemental objects, known as particles, over a surface. We use the grass particles pro-
vided by theGrass Essentials‡, and theGrass package‡, containing expert-designed realistic-
looking grass particles. There are more than 30 species of grass (e.g. St. Augustine grass,
bahiagrass, and centipedegrass) and weed (e.g. dandelions, speedwell, and prickly lettuce),
each has up to 49 model variations. The appearance of the grass patch is controlled via
numerical parameters, such as freshness, brownness, wetness, trimmed levels, lawn stripe
shape, etc. Illustrations for different grass and weed species are shown in Figure 6.4 (top).

The other terrains are designed using textures from the Poliigon collection‡ of high
quality photo-scanned textures. Illustrations are shown in Figure 6.4 (bottom). Each tex-
ture contains a reflectance, surface normal, glossy, and reflectionmapwith expert-designed
shaders for photo-realism. The combined landscapes and terrains can be seen in Figure 6.1.

Environment Lighting in our dataset is created by 2 sources, a sun lamp and a sky
texture. A sun lamp is a direct parallel light source, simulating an infinitely far light source.
The source parameters include direction, intensity, size (shadow sharpness), and color. A
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clear cloudy overcast sunset twilight

Figure 6.5: Illustration for scene appearance changed according to different illumination conditions.

sky texture provides the environmental background of rendered images and a source of am-
bient lights. We use the Pro-Lighting: Skies package‡ composing of 95 realistic equirect-
angular HDR sky images of various illuminations. The images are manually chosen and
divided into 5 scenarios, namely clear (sky), cloudy, overcast, sunset, and twilight. We also
use 76HDR scenery images‡ to create more various and complex backgrounds, somewith
night lighting, coined scenery. An example of lighting effects is shown in Figure 6.5.

Pre-built models To enhance the model variations in the dataset, we also include
models prebuilt from different artists, including rocks‡, flowers‡, garden assets such as
fences, flower pots‡, etc.

6.3.2 Rendering

Camera setup We follow the real-world camera setup in the 3DRMSchallenge to create
a ring of 5 pairs of virtual stereo cameras, angular separation of 72◦ (Figure 6.6a). Each
stereo pair has a baseline of 0.03meters, and each camera has a virtual focal length of 32mm
on a 32mm wide simulated sensor. The rendered resolution is set to VGA-standard of
480x640 pixels. The camera intrinsic matrix is as follows:

K =




640 0 320
0 640 240
0 0 1


 . (6.1)

We generate a random trajectory for the camera ring for each illumination variation of
each gardenmodel. The speed is set to about 0.5m/s, frame rate of 10fps, simulating a trim-
ming robot in a garden. To improve the variability, the camera ring is set to randomly turn
after a randomnumber of steps and avoid running through the objects. The turning angles
are also randomized to include both gradual and abrupt angles. The trajectory lengths are
set to be at least 100 steps. The examples are shown in Figure 6.6b.

Render engine Blender Cycles is a probabilistic ray-tracing render engine that de-
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(a) (b)

Figure 6.6: The camera system includes 5 pairs of stereo cameras at 72◦ angular separation (a) and ran-
dom trajectories used in rendering process (b)

rives the color at each pixel by tracing the paths of light from the camera back to the light
sources. The appearances of the objects are determined by the objects’ material proper-
ties defined by the bidirectional scattering distribution function (BSDF) shaders, such as
diffuse BSDF, glossy BSDF, translucent BSDF, etc.

Scene aspects such as geometry, motion and the object material properties are rendered
into individual images before being combined into a final image. The formation of a final
image I(x) at position x is as follows§:

fg(x) = gcolor(x)(gdirect(x) + gindirect(x)), (6.2)

I(x) = fD(x) + fG(x) + fT(x) + B(x) + E(x), (6.3)

whereD,G,T,B,E are respectively thediffuse, glossy, transmission, background, and emis-
sion passes. Dcolor is the object colors returned by the diffuse BSDF, also known as albedo;
Ddirect is the lighting coming directly from light sources, the background, or ambient occlu-
sion returned by the diffuse BSDF, while Dindirect after more than one reflection or trans-
mission off a surface. Similar are G and T with glossy and transmission BSDFs. Emission
and background are pixels from directly visible objects and environmental textures. The
intermediate image contains at each pixel the corresponding data or zeros otherwise. All
the computations are carried out in the linear RGB space. Blender converts the composite
image to sRGB space using the following gamma-correction formula and clipped to [0, 1]
before saving to disk:

§c.f . Blender 2.83Manual, last access July 2020
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Split Training (127) Test (20)

full 20K

clear 74,913 10,035 3,333
cloudy 73,785 10,030 3,378
overcast 73,260 10,015 3,349
sunset 73,715 10,040 3,250
twilight 73,992 10,045 3,369

total 369,663 50,165 20,000

Table 6.1: Number of images per scene and split; the number of models are in parentheses

γ(u) =



12.92u u ≤ 0.0031308

1.055u1/2.4 − 0.055 otherwise
(6.4)

In our dataset, besides the RGB stereo pairs and cameras’ poses, we provide the images
from intermediate stages, namely albedo, shading, translucency, etc. for the left cameras.
As the rendering are physics-based, the intermediate images represent different intrinsic
modalities. Examples are shown in Figure 6.1.

6.4 Experiments

In this section, the goal is to quantitatively analyze the newly created dataset to assess its
realism and usability. The evaluation is performed via two proxy tasks: semantic segmen-
tation and monocular depth estimation. We split the dataset into training (127 models,
369,663 monocular images) and test set (20 models, 60,195 images). To speed up the eval-
uation process, we uniformly sample 20K images from the full test set. The statistics are
shown in Table 6.1. The sample list will also be released together with the dataset.

6.4.1 Semantic segmentation

For semantic segmentation,weuse the state-of-the-artDeepLabv3+architecturewithXception-
65 backbone [199]. Three aspects of the dataset are analyzed, namely (1) training size, (2)
lighting conditions, and (3) compatibility with real-world datasets. The label set is from
the 3DRMS challenge [179, 200]: void, grass, ground, pavement, hedge, topiary, flower,
obstacle, tree, background. Background contains the sky and objects outside of the gar-
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Figure 6.7: Number of pixels per class in the dataset (top) and distributions in the images (bottom).
The boxplot shows the 1st, 2nd (median) and 3rd quartile of the number of pixels in each frame, with
the whisker value of 1.5. background includes sky and object outside of the garden, while void indicates
unknown pixels, which should be ignored.

den, while void indicates unknown objects to be ignored. The label statistics are shown in
Figure 6.7. We also follow the network’s training setup and report mean intersection-over-
union (mIOU). The results are shown in percentage and higher is better.

Training and testing size Wefirst show the benefit of an increasing training set and
the performance on the full and reduced test set. The results are shown in Table 6.2. The
performance increases when the training size increases, showing the advantage of having
large amount of training samples. The evaluation on the reduced test set is similar to the
full set. Thus, unless mentioned otherwise, the test20K split will be used for evaluation in
later experiments.

Lighting conditions Our dataset contains the same garden models in various light-
ing conditions, allowing in-depth analysis of illumination dependency of different meth-
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Sampling Test

full 20K

25% 75.71 75.89
50% 79.42 79.52
100% 81.96 82.09

Table 6.2: Performance with respect to different training size and at 2 test splits. The network perfor-
mance increase when being trained on higher number of images. The performance on the reduced test set is
on par with the full set.

Training Test

clear cloudy overcast sunset twilight 20K

clear 76.10 76.91 76.43 72.23 75.91 72.03
cloudy 75.09 77.59 77.16 72.37 76.40 72.30
overcast 65.75 75.52 78.41 70.76 74.63 70.22
sunset 73.21 75.76 77.17 74.44 77.28 71.84
twilight 66.19 72.86 76.21 70.55 78.16 68.83

Table 6.3: Cross-lighting analysis. Each row corresponds to a model trained on the specific lighting con-
dition (highest values are in italics), while each column corresponds to the results evaluated on the specific
subset (highest values are in boldface). Lighting-specific training gives better results on the specific lighting,
while the results in the cross-lighting vary depending on the conditions of the training and test images.

ods for different tasks. In this section we perform cross-lighting analysis on semantic seg-
mentation. We conduct lighting-specific training of the networks, and evaluate the results
on each lighting subset of the full test set, as well as the reduced test set. The results are
shown in Table 6.3. All experiments are trained with the same epoch numbers.

For almost all of the categories, training on the specific lighting produces the best re-
sults on that same categories. This is not surprising, as networks always perform the best
on the most similar domains. In general, training with cloudy images gives the highest per-
formance, while twilight are the lowest. This could be due to relatively bright images and
less intricate cast shadows in cloudy scenes, in contrast to the mostly dark and color cast
twilight images.

Compared to training with all the full training set in Table 6.2, the results from training
with lighting-specific images are generally lower and near to the 25% subset. This agrees to
the training size conclusion as the lighting-specific training sets account only for around
20% of the data. Testing on the same lighting gives a boost in performance, similarly to
training with double data size.
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Pre-training Test

3DRMS Freiburg

Generic 24.35 41.33
Cityscapes 31.11 50.08
EDEN 34.55 52.45

Table 6.4: Adaptability of features pre-trained on different datasets to unstructured natural real-world
scenes. The network pre-trained on EDEN outperforms all other alternative approaches on both 3DRMS
and Freiburg test sets.

Real-world datasets Semantic segmentation requires to recognize objects from the
appearancemodels learned during training. Therefore, it indicates the closeness of training
data to the testing domain. By analyzing the features learned from EDEN on real images
of unstructured natural scenes, the results indicate the realism level of our dataset. To that
end, the real-imagery datasets 3DRMS [200, 179] (garden scenes, 221 annotated real im-
ages for training, 268 for validation, 10 classes), Freiburg forest [192] (forested scenes, 228
annotated real images for training, 15 for validation, 6 classes) are used for evaluation.

The baselines include (1) the network pre-trained on combination of generic datasets,
COCO [53], ImageNet [54], and augmented PASCAL-VOC 2012 [102], and (2) the net-
work pre-trained on ImageNet and urban driving scene dataset Cityscapes [101]. The pre-
trained weights are all provided by the networks’ authors [199]. We keep the encoder part
frozen and finetune only the decoder using the train split of each target set for 50K itera-
tions. The results are shown in Table 6.4.

The networks using the features learned from EDEN out-perform all alternative ap-
proaches. Both 3DRMS and Freiburg features highly unstructured scenes with mostly
deformable and similar objects found in the nature, drastically different from the generic
images and structured urban scenes. The results show the realism of our datasets to natural
scenes and its benefit on training deep networks. The results on Freiburg test are higher
than on 3DRMSdue to the relatively simpler and general class labels (e.g. trails, grass, vege-
tation, and sky) compared to the garden-specific label sets of 3DRMS(e.g. hedges, topiaries,
roses, tree, etc.).

6.4.2 Monocular depth prediction

Monocular depth prediction is an ill-posed problem. Often the ambiguity is mitigated by
learning from a large-scale depth-annotated dataset [201, 202] or imposing photometric
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Figure 6.8: Number of pixels per depth range in the dataset. Each range is a left-inclusive half-open
interval.

constraints on image sequences using relative camera poses [157, 158] As camera pose pre-
diction can be formulated using depth constraint, the depth-pose prediction problems can
be combined in a self-supervised learning pipeline.

Synthetic datasets are favored for being noise-free, which can act as controlled environ-
ments for algorithm analysis. In this section, we use EDEN to test different monocular
depth prediction networks. Specifically, we examine the effectiveness of using supervised
signals in learning depth prediction for unstructured natural scenes. The statistics of the
depth in the dataset are shown in Figure 6.8.

We show the results of training state-of-the-art architectures using different ground
truth information, namely depth and camera pose. To that end, the 2methods, VNL [202]
andMD2 [158] are used. VNL is trainedwith supervised depth, whileMD2 canbe trained
with ground truth camera pose or in self-supervised manner. Both are trained using the
schedules and settings provided by the respective authors. The results are shown in Ta-
ble 6.5 with 3 error metrics (rel, log10, rms, lower is better) after the original work and
included the reported results on the KITTI dataset for comparison.

Generally, supervised method always produce better results than their self-supervised
counterpart as shown by the smaller errors. The difference are less for the KITTI dataset
compared to EDEN. As KITTI contains mostly rigid objects and surfaces, it is simpler to
obtain predicted camera poses with high accuracy. On the other hand, camera pose predic-
tion for self-supervised learningonEDENareunreliable because of deformable objects and
their similarities. The errors are, therefore, also higher for supervised methods on EDEN
than on KITTI, showing the more challenging dataset. KITTI has higher RMS numbers
due to the larger depth ranges, approximately 80m vs. 15m of EDEN.
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Method Supervised Dataset rel log10 rms

MD2 None KITTI 0.115 0.193 4.863
VNL Depth KITTI 0.072 0.117 3.258

MD2 None EDEN 0.438 0.556 1.403
MD2 Pose EDEN 0.182 0.220 0.961
VNL Depth EDEN 0.181 0.083 1.061

Table 6.5: Performance of different SOTAmethods for monocular depth prediction when trained on
KITTI and EDEN. The gap is larger between unsupervised and supervised methods on EDEN, showing the
necessity of having supervised signals for learning unstructured scenes. The errors on EDEN are generally
higher than on KITTI, showing the more challenging scenes of the (unstructured) dataset.

6.5 Conclusions

The chapter presents EDEN, a large-scale multimodal dataset for unstructured garden
scenes, and provides baseline results and analysis on two important computer vision tasks,
namely the problems of semantic segmentation and monocular depth prediction. The ex-
periments show favorable results of using the dataset over generic and urban-scene datasets
for nature-oriented tasks. The dataset comes with several computer vision modalities and
is expected to stimulate applying machine and deep learning to agricultural domains.

Add-ons packages

Following list the packages and their corresponding links, which are used in the construc-
tion of the datasets. All links are last accessed in June 2020.

Blender Sapling add-on, Royalty-Free License
https://docs.blender.org/manual/en/latest/addons/add_curve/sapling.html

Arbaro, GNUGeneral Public License version 2.0
https://sourceforge.net/projects/arbaro/

Ivy generator, Thomas Luft
http://graphics.uni-konstanz.de/~luft/ivy_generator

Blender IvyGen Add-on
https://docs.blender.org/manual/en/dev/addons/add_curve/ivy_gen.html

Grass essential package, Royalty-Free License
https://blendermarket.com/products/the-grass-essentials

83



6

6. MULTIMODAL SYNTHETICDATASETOF ENCLOSEDGARDENS

Grass package, Royalty-Free License
https://www.3d-wolf.com/products/grass.html
Pro-Lighting Skies package, Royalty-Free License
https://blendermarket.com/products/pro-lighting-skies
Poliigon, Royalty-Free license
https://www.poliigon.com/
HDRIHaven, CC0 license
hdrihaven.com
Essential rock package, Royalty-Free license
https://blendermarket.com/products/the-rock-essentials
Flower package 1, Royalty-Free license
https://blendermarket.com/products/flowers-pack-1
Flower package 2, Royalty-Free license,
https://blendermarket.com/products/flowers-pack-2
Garden asset package, Royalty-Free license
https://blendermarket.com/products/garden-asset-pack
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The eye is the lamp of the body.
So, if your eye is healthy, your whole body will be full of light;
but if your eye is unhealthy, your whole body will be full of darkness.

Matthew 6:22

7
Summary and Conclusions

Summary

The thesis investigates various computer vision modalities, which, taken from the broad
definitions, include both sensory data as well as subsequent interpretation such as RGB,
depth, intrinsic images, semantic maps, surface normals, optical flow, and point clouds.
Specifically, the thesis focuses on the research question how can various computer vision
modalities be exploited and combined? The question is tackled frommultiple perspectives,
starting with decomposing a primary modality, followed by the study of modality comple-
ment and combination. The subsequent chapters exploremultimodality from a generative
perspective, how amodality benefits generation of the others, and concludes with the con-
struction of a multimodal synthetic dataset.

Chapter 2 studies the decomposition of photometric information into objects’ texture
colors (albedo) and geometry and illumination effects (shadings). We propose two deep
learning architectures combining domain knowledge from the well-established Retinex
method and constrained by physics-based reflectionmodels. The proposedmodels are eval-
uated on synthetic, real world and in-the-wild images. Quantitative results show that the
new model outperforms existing methods, while visual inspection shows that the image
formation loss function augments color reproduction and the use of gradient information
produces sharper edges.

Chapter 3 investigates the complementary information among the important modali-
ties of computer vision, namely optical flow, surface normals and semantic segmentation.
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We analyze the combination of the three modalities and their impact on one another. Sur-
face normals signify the objects’ shapes, optical flow represents motion informationwhich
depends on object types and shapes, and semantic segmentation provides the categories
and extension of objects in a scene. We approach the problem at a modular level where
eachmodality input is refined frompreliminary estimation using only the othermodalities
and not RGB images. Experimental results show that semantic information helps object
boundaries, optical flow improves scene structures, and surface normals facilitate object
recognition with geometric cues.

Chapter 4 focuses on capturing and generating non-rigid optical flow. The motion pat-
terns are confined to complex movements of objects in real world videos. To that end,
object segmentation is applied to extract the objects of interest whose motion character-
istics are recorded by correspondences among the frames along the video sequence. The
as-rigid-as-possible deforming principle is applied to the object segments to generate the
flow field. By image warping, the generated flow fields can be used as ground truths for the
first image and its warped version. Extensive experimental results show that the generated
data are helpful for training deep networks for optical-flow prediction.

Chapter 5 exploits objects’ geometry in predicting their appearances from unobserved
points of views. The relationship between geometric and photometric information is im-
plemented by the forward and backward warping principles to jointly train a monocular
depth prediction network and image completion network. The proposed method shows
quantitative superiority over the current state-of-the-art as well as impressive qualitative re-
sults in 360◦ views image generation, and point cloud reconstruction from single images.

Chapter 6 presents a multimodal dataset and analyzes its performance on 2 important
computer vision tasks, semantic segmentation andmonocular depth prediction. Semantic
segmentation results show that features learned from the dataset are more efficient in pre-
training deep networks for unstructured natural scenes, compared to other well-known
large scale datasets, thus proving the dataset reality level. Depth is predicted in both su-
pervised and self-supervised monocular settings Camera odometry ground truths are also
employed within the context of depth prediction, which shows comparable results to us-
ing ground truth depths. The experiments show favorable results of using the dataset over
generic and urban-scene datasets for nature-oriented tasks. The dataset comes with sev-
eral computer vision modalities and is expected to stimulate applying machine and deep
learning to agricultural domains.
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General Conclusions

The thesis has offered a number of studies for computer vision modalities and their use
cases, inspired by the human’s abilities of utilizing various perceptual modalities. Convey-
ing different perspectives of the world, the visual modalities are extracted within humans’
cognitive process for better environmental experience.

However, the thesis has only scratched the surface of understanding and exploiting vi-
sual multi-modalities. Although visual perception once was to assist living entities’ surviv-
ability, it has since evolved to be the effective channel, a lamp (c.f . the epigraph), for hu-
mans to deepen their understanding of the world. As humans, driven by the pure desire to
know [203], constantly seek intellectual knowledge and rational meaning in the surround-
ings, our perception and cognition have grown complex and intertwined [204], leading to
more sophisticated comprehension capabilities.

Therefore, a logical next stepwould be involvingmultiplemodalities in improving learn-
ing capacity and expansion to the time domain. Optical flow relating information along
the temporal axis is studied inChapter 3 and 4 yet only to the extent of a limited number of
local points in time. The desire could be a unified and continuous representation of multi-
plemodalities, which improve each componentmodality and/or give raise to subsequently
newmodalities. The use of multimodality could be the solution for the well-known catas-
trophic forgettingproblemof artificial intelligence [205, 206]. Asmultisensory integration
is an important biological factor in lifelong learning [207], multimodal data should play a
role in tackling the challenges of continuous learning in artificial intelligence.

Humans’ experiences are enrichedvia various encounters and interactions over the course
of life. In the similar manner, multimodality should also be studied in different applica-
tions. Recognition of faces, emotions, actions, activities, scenes, etc. are all different scenar-
ios where multimodality can be of use and explored. Understanding the combination of
different modalities within these contexts would eventually lead to more insights for the
unified representation.

Furthermore, as the topics presented in this thesis mostly deal with generic computer
vision problems, systematic and careful studies would be desired to adapt the concepts to
specialized domains, such as earth observation and remote sensing, or medical computer
vision. Each field uses its own typical data types and disciplines, such as radargrams, sono-
grams, thermograms, x-ray images, MRI, etc. obtained from non-optical sensors like radar,
LiDAR, SoNaR, infrared vision devices, etc. These technologies, despite proving to be use-
ful in their applicative contexts, provide information beyond the visible spectrum, hence
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not straightforwardly compatible with methods designed for conventional computer vi-
sion modalities. Multimodal research with divergent sensors is helpful for understanding
machine learning capability and extend its applicability.

Computer vision, once started as a loosely separate problem from artificial intelligence
and going after the mechanism of the visual system [208], has achieved advanced and im-
pressive resultswhichmight surpass human-level performance [209] since thebreakthrough
of deep neural networks. As multimodality is being learned and artificial intelligence is ap-
proaching human cognitive level, humans can be liberated from repetitive and dangerous
jobs to focus on what truly makes us human: loving and being loved... For despite all of
AI’s astounding capabilities, the one thing that only humans can provide turns out to also be
exactly what is most needed in our lives: love. [210]
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8
Samenvatting

Begrip van Beelden uit Meerdere Modaliteiten van Scènes in de Openlucht

Dezethesis onderzoekt verschillende modaliteiten binnen de beeldbewerk-
ing, die breed gezien, zowel sensor data als de resulterende interpretatie van deze sensor
data omvat. De data diemeegenomen is in deze thesis zijnRGB-beelden, diepte-beelden,

intrinsieke beelden, semantische beelden, oppervlak normaalvectoren, optisch stroomveld, en pun-
tenwolken. Deze thesis gaat in op de volgende onderzoeksvraag: Hoe kunnen verschillende beeld-
modaliteiten kunnen worden geëxploiteerd en gecombineerd? De onderzoeksvraag wordt belicht va-
nuitmeerdere perspectieven, beginnend bij het ontleden van de hoofd-modaliteit, gevolgd door het
combineren met andere modaliteiten. De volgende hoofdstukken verkennen multi-modaliteit in
zijn algemeenheid: Hoe heeft modaliteit profijt bij het generen van andere modaliteiten? De thesis
wordt afgesloten met het ontwerpen en construeren van een multimodale synthetische dataset.

In Hoofdstuk 2 wordt de decompositie van fotometrische informatie in de kleur van een ob-
ject en geometrische- en belichtingseffecten bestudeerd. We stellen twee Deep Learning architec-
turen voor die domein-relevante kennis van de bekende Retinex methode met beperkingen uit
natuurkunde-gebaseerde reflectiemodellen combineren. De voorgestelde modellen worden geëval-
ueerd op synthetische, natuurlijke, en “in-het-wild” beelden. Kwantitatieve resultaten tonen aan
dat de nieuwe voorgestelde modellen beter presteren dan bestaande methoden. Kwalitatieve in-
spectie laat zien dat de energie functie voor het construeren van de beelden, kleur voorspellingen
verbetert. Daarnaast is er sprake van scherpere randen door het gebruik van afgeleiden.

In Hoofdstuk 3 wordt de complementerende werking van informatie in meerdere modaliteiten
binnen de beeldbewerking onderzocht: optisch stroomveld, oppervlak normaalvectoren en seman-
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tische segmentatie. We analyseren de combinatie van deze drie modaliteiten en hun impact op
elkaar. Oppervlak normalen zijn gedefinieerd als de vormen vande objecten, optische stroomvelden
zijn gedefinieerd als bewegings informatie en hangen af van de vorm en het type object, en seman-
tische segmentatie levert verschillende categorieën of extensies van objecten aan in een scène. We
benaderen het probleem op eenmodulair niveau, waar elke begin-modaliteit apart wordt verbeterd
uit een eerste schattig door alleen gebruik te maken van de andere modaliteiten en niet de RGB-
beelden. Experimentele resultaten laten zien dat semantische informatie hulp biedt in het schatten
van object grenzen, optische stroming verbetert het schatten van scène structuren, en dat oppervlak
normaalvectoren faciliteren objectherkenning with geometrische informatie.

Hoofdstuk 4 legt de focus op het vangen en genereren van niet-rigide optische stroming. The
bewegingspatronen zijn beperkt tot complexe bewegingen van objecten in natuurlijke videos. Om
daarmee te helpen, is object segmentatie toegepast om objecten te scheiden wiens karakteristieke
bewegingen zijn vastgelegd door correspondentie tussen meerdere beelden uit een video. Het zo-
rigide-als-mogelijk vervormingsprincipe is toegepast op segmentenvanobjectenomhet stromingsveld
te genereren. Door het vervormen van een beeld, kunnen de gegenereerde optische stroomvelden
gebruikt worden als grondwaarheden voor het eerste plaatje en de vervormde versie. Uitgebreide ex-
perimenten laten zien dat de gegenereerde data helpen in het trainen van diepe neurale netwerken
voor het voorspellen van optische stroming.

In Hoofdstuk 5 wordt de geometrie van een object gebruikt in het voorspellen van het aanzicht
van eenobject uit niet geobserveerdeperspectieven. De relatie tussen geometrische en fotometrische
informatiewordt geïmplementeerdmetbehulp vanvoorwaartse en terugwaartse vervormingsprincipes
om tegelijkertijd twee netwerken te trainen: Een netwerk dat diepte voorspelt uit monoculaire
beelden en een netwerk dat beelden compleet maakt. Kwantitatief gezien haalt de voorgestelde
methode superieure resultaten ten opzichte van de state-of-the-art. Ook haalt de methode indruk-
wekkende resultaten in het genereren van 360 graden beelden en het voorspellen van puntenwolken
uit enkele beelden.

In het laatste Hoofdstuk presenteren we een multimodale dataset en analyseren behaalde resul-
taten op de dataset voor twee belangrijke taken in beeldbewerking: semantische segmentatie en
diepte schatting. Resultaten in semantische segmentatie doen vermoeden dat geleerde kenmerken
uit dedataset efficiënter zijn inhet voor-trainenvandiepeneurale netwerkenvoorongestructureerde
natuurlijke scènes in vergelijking met andere grote bekende datasets. Dit bewijst dat de nieuwe
dataset een sterke mate van realiteit encodeert. Diepte wordt geschat zowel in een gesuperviseerde
en niet zelf-gesuperviseerde manier in monoculaire context. Camera odometrie grondwaarheden
worden ook ingezet in de context van diepte schattingen. Hier worden resultaten behaald gelijk aan
resultaten met diepte grondwaarheden. Experimenten laten zien dat er gunstige resultaten worden
behaald ten opzichte van generieke in stedelijke datasets specifiek voor natuur-georiënteerde taken.
De dataset bevat enkele modaliteiten die belangrijk zijn voor beeldbewerking en de verwachting is
dat het onderzoek in deep learning zal stimuleren voor het agriculturele domein.
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Faithful friends are a sturdy shelter; whoever finds one finds a treasure.
Faithful friends are beyond price, no amount can balance their worth.

Sirach 6:14–15
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