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Abstract—This paper is to provide an overview of how object
features from images influence face detection performance, and
how to select synthetic faces to address specific features. To
this end, we investigate the effects of occlusion, scale, viewpoint,
background, and noise by using a novel synthetic image generator
based on 3DU Face Dataset. To examine the effects of different
features, we selected three detectors (Faster RCNN, HR, SSH) as
representative of various face detection methodologies. Compar-
ing different configurations of synthetic data on face detection
systems, it showed that our synthetic dataset could complement
face detectors to become more robust against features in the
real world. Our analysis also demonstrated that a variety of
data augmentation is necessary to address nuanced differences
in performance.

I. INTRODUCTION

Face detection is one of the most studied topics in the field
of computer vision. It plays a fundamental role in basically
all face related applications. Face detection requires first to
determine whether there is a face in an image or a video and
then to return the precise location of the face. A number of
effective face detection systems have been rapidly emerged in
recent years. It is impractical to evaluate on every recently
proposed detection system, we are fortunate that most of
the leading approaches shared a common methodology [1].
Deep network based object detection system can be roughly
classified as two categories: 1) Two step face detector is the
most representative detector based on deep network. Region
proposal is the fundamental step for all these kind of methods.
The first stage normally proposes candidate bounding boxes.
The second stage, features are extracted from each candidate
box for the following classification and bounding-box regres-
sion tasks. 2) One step face detector doesn’t need a region
proposal unit before classification. Its light-weighted structure
is more time efficient but less accurate [2].

Face detection still confronts challenges from features in
scale, head pose, expression, facial occlusion and illumination.
Existing dataset for face detection like FDDB [3], MAFA [4]
and Wider Face [5], the majority of data normally belong
to limited range of variations. The faces did not sufficiently
represent extreme poses, scale or heavy occlusion, to train
a robust detector against all potential variations. Previous
researchers designed different face detectors to address specific
types of features in real-world situations. The rapid develop-
ment of deep learning essentially relies on the availability of

large-scale annotated datasets. Collecting and annotating real-
world datasets with different attributes is unpractical. It is
also difficult to fully control the imaging variations in such
datasets, or to avoid errors during annotation process. A bias
from ground truth may lead to far-reaching impact in deep
network.

Data augmentation deals with aforementioned issue by
artificially inflating the training set with label preserving
transformations [6, 7]. A variety of data augmentation methods
have shown effectiveness in face related tasks [8, 9]. In this
paper, we aim to address the issue by using synthetic data, as
complementary to real data, to create fully controlled condi-
tions with automatic and error-less annotation. We develop
a synthetic data generator based on 3D face models. The
2D face synthesis process contains varied viewpoint, scale,
illumination, occlusion and background. We manipulated all
these features or attributes in 3D scenes, to make the rendered
images more realistic than direct manipulation on 2D. With the
help of synthetic data, we are able to systematically investigate
the effects of different features. Then the face detectors are
trained on the combination of real data and synthetic dataset
to address the features. Based on our experiments, we also
identified some potential deficiencies of the current face de-
tection systems. Our paper can also be an example to analyze
other detectors.

Our contributions are:
• We provide a 2D face synthetic data generator with

manipulated features (on pose, scale, background, illu-
mination, and occlusion), which enables specified exam-
inations of face detector performances.

• We conduct detailed analyses between feature and perfor-
mance, which can be a guide to compare performances
of other face detectors.

• Our analyses also reveal some weaknesses of the current
face detectors and suggest using synthetic data for future
improvement on robustness.

II. RELATED WORK

A. Face detection

Face detection can be considered as a special case of object
detection. Two thorough survey related to object detection can
be found in [10] and [1]. Most face detectors are designed
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Fig. 1. An overview of render pipeline. We manipulate pose, background, occlusion, and illumination on original 3D models, and then render 3D models
into 2D images.

to address specific characteristics in real-world scenarios, in
terms of, for example, scale [11–15], occlusion [4, 16], pose
[17] or lighting condition [18]. A certain face detector may be
only suitable for datasets with corresponding characteristics
and is almost impossible to be robust against features of all
datasets.

We will briefly discuss several typical detectors and the
features they mainly deal with. To handle large variations
of scale, Hybrid Resolutions (HR) face detector is designed
to detect faces with extreme scale by using contextual infor-
mation and an image pyramid [19]; Single Stage Headless
(SSH) detector [20] is a fast one-step detector based on
scale-invariant design. To detect occluded faces, a local linear
embedding method is used to reduce noise and recover the
lost cues from occlusion in [4]; Face Attention Network [16]
uses a special attention network with reduced background
information and data augmentation to address face occlusion.

B. Face specific data augmentation
Basic geometric and photometric data augmentation meth-

ods, like flipping, rotation, resizing, cropping, color jittering,
have been widely used in deep learning based face applica-
tions. Detailed survey about face specific data augmentation
can be found in [21, 22]. Previous research converges to
support the effectiveness of synthetic data in improving the
performance in face related applications [23–25]. Masi et al.
[26] introduce face appearance variations with pose, shape and
expression for effective face recognition. Lv et al. [8] propose
multiple data augmentation for face recognition, including syn-
thetic variations for hairstyle, glasses, poses and illumination.

Then, the problem shifts to the generation of synthetic
face images. Face editing includes shape morphing [27, 28],
relighting [29, 30], pose normalization [31–33], and expres-
sion modification [34, 35]. GAN-based methods can provide

realistic results of facial attribute manipulation [36, 37] but
is yet bounded with the limitation of its training images. The
training images merely cover a narrow range of variations, and
cause some artifacts in generation.

III. PROBLEM FORMALIZATION

In order to investigate the influences of object features sys-
tematically, we generate synthetic face data targeting specific
feature for face detectors. In section III-A, we introduce the
influence of several major object features on face detectors.
Then we provide basic information about face detectors in
our experiments in section III-B. In section III-C, we explain
how we synthesize face images based on 3D face models.

A. Challenging Object features

We will briefly discuss several features which have major
effect on face detection performance.

Pose could significantly change the appearance of faces.
Extreme pose can lead to heavy occlusion or skewed aspect
ratio of face bounding boxes [33].

Scale is very challenging to deep network based modern
object detectors. For example, the features between a 10px
tall face and a 1000px tall face are essentially different [19].
Pyramid architecture and multi-scale inference are currently
the common approaches to detect faces of extreme scales [38].

Context information plays a fundamental role in providing
the precise location of faces. Normally, surrounding regions of
faces provide complementary information on object appear-
ance and high-level features [39]. However, faces in uncon-
strained settings may be surrounded or occluded by different
distracting objects.

Facial occlusion decreases information available for de-
tection and introduces additional noise. Facial occlusion can
be divided into two different categories: landmark occlusion



and heavy occlusion. Landmark occlusion means that only
a few landmarks like eyes or mouths are occluded, while
most parts of the faces are still visible. In contrast, heavy
occlusion represents situations where more than half of the
face is missing due to occlusion, image border or extreme
pose. It is most challenging when the occlusion comes from
other faces. A detector may identify several partially occluded
faces as one face [4].

Blur and low resolution usually impede face detectors
from retrieving available information. In some practical ap-
plications, images may be distorted in collection, storage, or
transmission, leading to degraded quality of images [40]. In
some extreme cases, mere outline of faces can be identified.

B. Face detectors

We provide an overview about the face detectors in our
experiment. A summary of how face detectors differ in their
performances can be found in supplementary material.

Faster RCNN is the most representative object detector
based on deep network. However, its initial design does not
have additional settings targeted at challenging features [41]
in face detection task.

Single Stage Headless (SSH) [20] detector is an extremely
fast one-step face detector, designed to be scale invariant.
To accelerate the inference process, it has a light-weighted
structure. This strategy jeopardizes the detector’s performance
when confronted with other potential variations.

Hybrid Resolutions (HR) face detector [19] has good
performance on tiny face detection by using wide-range con-
textual information and testing on multiple resolutions. Its ar-
chitecture resembles RPN [41] and uses both feature pyramid
and image pyramid. However, HR face detector is extremely
sensitive to tiny distracting objects from background. HR
also heavily relies on contextual information to locate faces.
For faces with limited information (e.g., heavily occluded,
extremely small or blurry), complex background could hinder
precise detection. Even though HR can sometimes perform
well when dealing with blurry or extreme pose, it is insuf-
ficiently robust in the detection of occluded faces, especially
when occlusion stems from other faces.

C. Face synthesis

Here we give a brief introduction on how we rendered
images from 3D face models. Our synthetic data generation is
based on a new 3D face dataset called 3DU Face Dataset. It
has 700 3D face mesh models with high-resolution texture of
435 different individuals. Some people have multiple records
taken at different times. Most models of this dataset are taken
in varying conditions. For future research and applications,
each model is annotated by humans with 50 landmarks.

An overview of our render pipeline can be found in Fig.
1. The rendering pipeline is built on Blender. To change
the viewpoints, we rotated the model with different Euler
angles with the camera staying in the same position. The
parameters of pitch, yaw and roll are selected randomly within
different ranges. For face scale variation, the distance between
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Fig. 2. Performance comparison on pose variation. Across pitch, yaw, and
roll, different colors represent the rotated degree, as labeled at the top right
(e.g., “15” means “-15” to “15”).

camera and face models is selected randomly from a uniform
distribution. The ground truth for face detection is generated
from 3D landmarks. The annotation policy is the same as in
Wider Face. Our rendering pipeline can also be applied on
other 3D face models.

In the current research, we consider face occlusion as a
crucial factor in face detection. Common way to add occlusion
is to crop face images. However, cropping reduces the infor-
mation of faces and cannot provide reasonable noise as in real
occlusion samples. We randomly add different 3D objects like
sunglasses, hats, and helmets in the 3D scenes before we start
rendering. With the anchoring of landmarks, all the objects can
be placed in a reasonable location to simulate the landmark
occlusion. Face region has been divided into three different
parts of head, eye and mouth, to simulate occlusion. We can
generate more than 1000 different combinations of occlusion
for each model.

IV. EXPERIMENTS

A. Experimental setup

We conduct experiments to systematically investigate how
configuration of data augmentation influences performance of
face detection. We test on advanced face detection benchmarks
MAFA, UFDD and Wider Face. The face detection methods
include Faster RCNN, SSH and HR. Despite the common
practices of training and testing on the same datasets, here
we first train the face detectors on synthetic data and then test
on real data. We validate on subset of real data training part.
After comparing the performance on real data with different
rendering parameters, we attain a suitable configuration for
one specific dataset. We use these augmented synthetic data
to improve performance on real data. The metric for all the
experiment is AP (average precision). We keep the original
parameters and settings including data augmentation for each



TABLE I
THREE FACE DETECTION BENCHMARKS AND THEIR CHALLENGING

CHARACTERISTICS.

Feature MAFA UFDD Wider
landmark occlusion X X X

complex background X
extreme pose X
extreme scale X X

heavy occlusion X X X
blur X X X

extreme illumination X X
misleading objects X X

detector. More details of face detectors and rendering process
can be found in supplementary material.

B. Datasets

We briefly introduce three face detection datasets used in
our experiments and their features. In Table I, we listed and
compared features of these face detection benchmarks, which
are derived from their official introductions. For all three
datasets, we follow official settings for splitting train and test
set.

MAFA is a representative dataset of facial occlusion, which
is mainly composed of various level of occlusions [4]. To
exclude the interference of pose, MAFA only includes a
narrow range of head poses. Faces are labeled as “Ignore”
if they are very difficult to be detected.

UFDD contains faces in different weather conditions and
other challenging features concerning lens impediments, mo-
tion blur and defocus blur [42]. Additionally, it has a collection
of distracting images to enhance difficulty. In UFDD, the most
challenging part is extreme lighting condition and blur.

Wider Face has been the most demanding benchmark
for face detection pipeline till now [5]. It includes diverse
events with a variety of backgrounds. The massive number
of faces included has extreme poses, exaggerated expressions,
heavy occlusion and extreme lighting conditions. All these
features, especially scale, are difficult to handle for most face
detectors. Table II shows the basic characteristics of faces,
irrespective of invalid faces, in the Wider Face validation
partition. Successively, the easy partition only has large faces;
the medium partition additionally contains medium faces; and
the hard partition includes the whole dataset.

TABLE II
FACE SCALE INFORMATION OF THE VALIDATION SET IN WIDER FACE. WE

DISTINGUISH THREE FACE CATEGORIES BASED ON HEIGHT AND WIDTH.
PROPORTION INFORMATION REPRESENTS THE PERCENTAGE OF FACES

THAT FITS WITHIN THE SCALE INTERVAL.

Partition Large Medium Tiny
Height 50-400 (96.6%) 30-50 (99%) 10-30 (99%)
Width 20-300 (96.3%) 10-70 (99.7%) 8-20 (95%)
Number 7211 6108 18636

0.828 0.841 0.835
0.796 0.808 0.797

0.627 0.607
0.633

easy medium hard

(a) Effect of extreme pose

0.6

0.7

0.8

0.9

A
P

w/o
5%
10%

0.494

0.738  0.77

0.531

 0.75 0.781

masked only w/o Ignored

(b) Effect of occlusion

0.5

0.6

0.7

0.8

A
P

w/o
landmark occlusion
mixed occlusion

  0.8 0.797 0.793

  0.7  0.72
0.774

 0.42
 0.46

0.533

easy medium hard

(c) Effect of occlusion from face

0.4

0.6

0.8

A
P

w/o
50%
80%

0.818 0.828 0.811
0.745 0.774 0.796 0.784

0.742

 0.53

0.627
0.589 0.596

easy medium hard

(d) Effect of sampling noise

0.5

0.6

0.7

0.8

A
P

w/o
set A
set B
set C

Fig. 3. Performance comparison on other features. Only (b) tests on MAFA
test set, while the remaining are on Wider Face validation set. (a) shows
the results after adding small-portion extreme pose into training dataset; (b)
shows the results of adding different types of occlusion. “w/o Ignored” means
face with label “Ignored” are not included; (c) shows the results of adding
occlusion from other faces. (d) shows the results of adding different noise
from down-sampling or up-sampling;

V. EVALUATION ON OBJECT FEATURES

Based on our own rendering pipeline, we are able to
generate all kinds of synthetic datasets with fully controlled
configuration. We can investigate in-depth the effect of vari-
ous data augmentations. Compared with other detectors, the
architecture of HR is specially designed for face detection.
HR would be a suitable option to reveal all the effects of
different data augmentations. The following experiments in
this section are all based on HR. For all experiments, we study
one feature at the time. The other features are kept the same.
The comparison about the basic settings of rendering process
is in supplementary material.

Effect of pose: We investigate the effect of head pose
on Wider Face because it has a wide range of pose. To
this end, we set different ranges for pitch, roll and yaw.
As shown in Fig. 2, a narrow range of head pose provides
better performance. Despite some extremes, most faces only
have a small range of pose. When head pose becomes too
extreme, performance starts degrading. Then we add different
portion of face images with extreme orientation to the training
dataset in Fig. 3 (a). A lower ratio of extreme data boosts the
performance on “easy” and “medium” faces.

Effect of occlusion: We test two different kinds of face
occlusion respectively. The first kind is from other objects
except faces. MAFA concentrates on occluded face images,
so we test on MAFA test set in three different settings:
baseline condition with no occlusion, landmark occlusion
setting, and mixed occlusion setting (including landmark and
heavy occlusion). As shown in Fig. 3 (b), the performance
on MAFA test set improves drastically after adding occlusion
in the synthetic training dataset. HR becomes more robust
after training on synthetic faces with landmark and heavy
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Fig. 4. Performance comparison on different sizes of synthetic data in training
on MAFA test set with different detectors.

occlusions. Some occlusion examples can be found in Fig.
1.

The second kind of occlusion is from other faces or human
body parts. We choose Wider Face validation set to test the
effect. This is because many images in Wider Face are group
pictures, and some image may have hundreds of overlapped
faces. We only set the threshold for the overlap between
synthetic faces, to avoid other large faces to cover the tiny
faces. As shown in Fig. 3 (c), after adding occlusion from
other faces, the performance of HR for hard level in Wider
validation set improves substantially.

Effect of noise: Every benchmark has its own configura-
tions when established. Wider Face dataset has a bias during
its collection process: the original images downloaded from
search engine are resized to one predetermined width 1024
pixel, which causes every image to have noise from down-
sampling or up-sampling. Therefore, we first render images
with multiple resolutions (as Set A, B and C as below) ,
and then re-size them to one fixed resolution (1024×768).
Set A includes various high-resolution images (4096, 3072,
2048). Set B has various high- and low-resolution images
(4096, 3072, 2048, 512, 256, 128). And Set C has various
low-resolution images (512, 256, 128). We demonstrate the
influence of noise at all the difficulty levels of Wider Face
in Fig. 3 (d). The performance at all the difficulty levels of
Wider Face has been improved, especially for tiny faces. Set
A achieved the best performance because its pattern resembles
tiny faces in Wider Face.

VI. IMPROVE PERFORMANCE THROUGH SYNTHETIC DATA

In this part, we show how to use our synthetic data to im-
prove performance on real datasets. We train on a combination
of Wider Face and synthetic data and then test on other dataset.
Visualization of our detection results can be found in Fig. 6.

0.878

0.943 0.938

0.852 0.863
0.914 0.913

0.837

 0.65

0.715 0.714
0.665

easy medium hard

Faster RCNN

0.6

0.7

0.8

0.9

1

A
P

0.927 0.935 0.937 0.936
0.914 0.921 0.924 0.921

 0.83
0.844 0.842 0.845

easy medium hard

SSH

0.8

0.85

0.9

0.95

1

A
P

0.929 0.933 0.935  0.94

0.912 0.917 0.915 0.921

0.826 0.819 0.822 0.827

easy medium hard

HR

0.8

0.85

0.9

0.95

1

A
P

Fig. 5. Performance comparison on different data augmentations on Wider
Face validation set with different detectors.

A. Evaluation on MAFA

We only use mixed face occlusion (that is landmark and
heavy occlusion as in Section V). The synthetic images for
data augmentation follow the setting of MAFA training set as
closely as possible. We presume the training data size would
have an effect on the performance. As shown in Fig. 4, the
performances of different detectors improve to some extent
with the increase of synthetic data. We do note that when we
add more synthetic data, the performance saturates and drops,
however. Our tentative explanation is the inherent bias in our
synthetic data.

B. Evaluation on UFDD

We show the influence of our data augmentation in Table
III. Three different synthetic sets are combined with real data
to improve detectors’ performance. “r” denotes the detector is
trained on real data. “r+s1” denotes the detector is trained on
a combination of real data and synthetic data set s1. s1 is our
basic settings for rendering with light occlusion. s2 combines
s1 with extra occlusion from other faces in the render process.
s3 adds additional blurry results from down-sampled high
resolution images into s2. More information can be found
in supplementary material. After merging synthetic data and
real data together, the performance of Faster RCNN, which
was trained on real data, has been improved significantly on
r+s1 and r+s2. Given that Faster RCNN was not trained on
different scales, the noise of s3 impedes it performance. As for
SSH, its architecture and parameters heavily relies on Wider
Face. The features in UFDD is too difficult for its light-weight
structure. Unsurprisingly, its performance becomes saturated
after being trained on real data. After adding synthetic data, its
performance is even worse than Faster RCNN. Faces in UFDD
are not very challenging to HR; the performance therefore only
changes slightly after using our data augmentation.
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Fig. 6. Qualitative results on different features of real dataset. We visualize examples of each feature. The green bounding boxes are ground truth. The
bounding boxes with other colors are predictions with different confidence intervals.

TABLE III
PERFORMANCE COMPARISON ON DIFFERENT DATA AUGMENTATIONS ON

UFDD TEST SET WITH DIFFERENT DETECTORS.

Detectors r r + s1 r + s2 r + s3
Faster RCNN 0.64 0.745 0.742 0.64

SSH 0.681 0.682 0.672 0.674
HR 0.721 0.733 0.721 0.736

C. Evaluation on Wider Face

We still use the same setting as in Section V to perform data
augmentation for Wider Face. The performance comparisons
are showed in Fig. 5. Faster RCNN is a generic object detector
without multi-scale inference, so it is supposed to generate
fewer predictions than HR and SSH. After we add synthetic
data, the performance substantially improves on all difficult
levels. The performances of HR and SSH nearly saturate after
being trained on real data. Although their architectures aimed
at Wider Face dataset, our synthetic data can still improve
performance to a certain extent.

VII. ANALYSIS

A. Analysis of object features

In general, proper amount of well-structured synthetic data
can be a good complement to real data in training face
detectors. The settings of synthetic data need to be similar
with configurations of real data. If targeting at a single
feature, the increase of data quantity cannot yield a consistent
improvement on performances. For a more complex dataset
like Wider Face, synthetic face images are generated with a
comprehensive combination of several features.

The advantage of synthetic data is that the variations in
dataset can be fully controlled in different practical situations.
Dataset could be adjusted depending on specific requirements.

Although, admittedly, there is always a domain gap between
synthetic data and real data, synthetic data can provide large-
scale dataset with annotation conveniently and precisely. Our
results on multiple challenging benchmarks with different
advanced detectors highlight the applicability of synthetic data
as complement to real data, to equip face detectors against
various features.

B. Analysis of face detectors

Based on our detection results, we analyze the performance
of three detectors respectively. Faster RCNN is an object,
instead of face, detector. It does not adjust settings of anchors
for any face detection benchmarks, and has much fewer predic-
tions without multi-scale inference. Despite that, our synthetic
data augmentation substantially improves its performance on
multiple challenging datasets.

SSH is the representative of one-step face detector. Even
though SSH is a face-targeted detector, adding our synthetic
data augmentation cannot help it outperform Faster RCNN in
most detection tasks except in hard level of Wider Face. Spe-
cialized in scale, SSH sometimes has imperfect performance
when encountering other features. Detectors have a trade-off
between speed and performance. SSH pursues fast speed in
inference process so that its light weight architecture cannot
handle other features.

Of crucial importance, although HR face detector already
has excellent performance in terms of all kinds of features,
our synthetic data still boosts its performance. However, HR
has a drawback that is extremely sensitive to tiny distracting
objects given its tiny-face-targeted architecture. In general,
HR generates more false positives than other detectors. The
design of HR restricts the generalization on normal faces.
Visualization and analysis for false positive examples can be
found in supplementary material.



VIII. CONCLUSION

In this paper, we proposed an experimental comparison of
main characteristics that influence face detection performance.
We customized synthetic dataset to address specific types of
features (scale, pose, occlusion, blur, etc.), and systematically
investigated the influence of different features on face detec-
tion performance. Through our analyses, we also identified
some potential deficiencies of the current face detection ar-
chitectures. To conclude, there are often challenging features
in real-world face detection. By providing an overview of
the relationship between object features and face detection
performances, we hope to assist researchers to choose more
appropriate synthetic data when addressing challenging real-
life variations.
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