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1. Overview 2. Motivation

Goal: Study the mutual interaction of different modalities,
inspired by human perception which combines different types
of information:
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» Analyzing the mutual interaction of the 3 modalities
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» Combining modalities to improve the other using CNN and boundaries
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» Large scale synthetic dataset of outdoor nature scenes
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We follow refinement strategy to study the relationship be-

tween the 3 modalities: flow discontinuity corresponds to

» Each modality is first learned by a baseline network.

depth discontinuity and
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» Predicted modality is refined with other (either ground
truth or predicted) using refinement architecture [5].
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> The scale box s scales down input size to o, then lighting conditions

up-samples the output back to the original size.

We also study cross-modality influence by doing single-task
and multi-task refinement, at different coupling levels.

4. Architectures

5. Experiments

Refinement architecture, inspired from [5] We refine each modality from the others (excluding RGB images)
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(a) Scale box structure (b) refinement architecture

Single task and multi-task refinement

U

(a) zero coupling

6. Refinement Couplings
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7. Qualitative results 8. Quantitative results
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