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Abstract. This paper discusses a reconstruction challenge held as a part
of the second 3D Reconstruction meets Semantics workshop (3DRMS).
The challenge goals and datasets are introduced, including both synthetic
and real data from outdoor scenes, here represented by gardens with a
variety of bushes, trees, other plants and objects. Both qualitative and
quantitative evaluation of the challenge participants’ submissions is given
in categories of geometric and semantic accuracy. Finally, comparison
of submitted results with baseline methods is given, showing a modest
performance increase in some of the categories.

Keywords: 3D reconstruction + Semantic segmentation + Challenge *
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1 Introduction

Over the last decades, we have seen tremendous progress in the area of 3D recon-
struction, enabling us to reconstruct large scenes at a high level of detail in little
time. However, the resulting 3D representations only describe the scene at a
geometric level. They cannot be used directly for more advanced applications,
such as a robot interacting with its environment, due to a lack of semantic infor-
mation. In addition, purely geometric approaches are prone to fail in challenging
environments, where appearance information alone is insufficient to reconstruct
complete 3D models from multiple views, for instance, in scenes with little tex-
ture or with complex and fine-grained structures.

At the same time, deep learning has led to a huge boost in recognition perfor-
mance, but most of this recognition is restricted to outputs in the image plane
or, in the best case, to 3D bounding boxes, which makes it hard for a robot
to act based on these outputs. Integrating learned knowledge and semantics
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with 3D reconstruction is a promising avenue towards a solution to both these
problems. For example, the semantic 3D reconstruction techniques proposed in
recent years, e.g. [9], jointly optimize the 3D structure and semantic meaning of
a scene and semantic SLAM methods add semantic annotations to the estimated
3D structure. Another recent step in this direction [5] shows that semantic and
geometric relationships can be learned end-to-end from data as variational pri-
ors. Learning formulations of depth estimation, such as in [6], show the promises
of integrating single-image cues into multi-view reconstruction and, in principle,
allow the integration of depth estimation and recognition in a joint approach.

The goal of the SDRMS workshop was to explore and discuss new ways for
integrating techniques from 3D reconstruction with recognition and learning. In
order to support work on questions related to the integration of 3D reconstruc-
tion with semantics, the workshop featured a semantic reconstruction challenge'.

In this paper we will first present the challenge objectives and introduce
datasets available for training, testing and validation of considered semantic
reconstruction methods. Next, received submissions will be described, perfor-
mance evaluation criteria defined and finally quantitative results will be com-
pared and discussed.

2 Reconstruction Challenge

The challenge dataset was rendered from a drive through a semantically-rich vir-
tual garden scene with many fine structures. Virtual models of the environment
allowed us to provide exact ground truth for the 3D structure and semantics
of the garden and rendered images from virtual multi-camera rig, enabling the
use of both stereo and motion stereo information. The challenge participants
submitted their result for benchmarking in one or more categories: the quality
of the 3D reconstructions, the quality of semantic segmentation, and the quality
of semantically annotated 3D models. Additionally, a dataset captured in a real
garden from moving robot was available for validation.

2.1 Objectives

Given a set of images and their known camera poses, the goal of the challenge
was to create a semantically annotated 3D model of the scene. To this end, it was
necessary to compute depth maps from the images and then fuse them together
(potentially while incorporating information from the semantics) into a single
3D model.

What we consider particularly challenging is the complex geometric structure
of objects in the outdoor scenes we ask participants to reconstruct in 3D. Unlike
scenes of man-made environments (indoor, urban, road-side) with certain degree
of regularity of seen surfaces, a typical outdoor scene will have trees and plants
with fine structures such as leaves, stems or branches, which are thin and noto-
riously hard to represent accurately. In real conditions those are also inherently

! http://trimbot2020.webhosting.rug.nl/events/3drms/challenge.
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non-rigid objects, e.g. grass moving in wind, which requires robust matching
procedures to cope with small moving object parts. We hoped the participants
would come up with representations or priors that will adapt to different objects’
geometry based on their semantic class to handle such difficulties.

3 Garden Dataset

Three groups of data were provided for the challenge, see Fig.3 for sample
images.
Synthetic training sequences consist of 20k calibrated images with their
camera poses, ground truth semantic annotations, and a semantically annotated
3D point cloud of 4 different virtual gardens.
Synthetic testing sequence consists of 5k calibrated images with their camera
poses from 1 virtual garden.
Real-world validation sequence consists of 300 calibrated images with their
camera poses from 1 real garden.
Semantic labels of objects distinguished are the following, with color code in
brackets: Grass (light green), Ground (brown), Pavement (grey), Hedge (ochre),
Topiary (cyan), Rose (red), Obstacle (blue), Tree (dark green), Background
(black).

All data are available from the git repository https://gitlab.inf.ed.ac.uk/
3DRMS/Challenge2018, where also details on the file formats can be found.

3.1 Synthetic Garden Data

We have randomly generated 5 virtual gardens (square 12m x 12m) and ren-
dered them using Blender, similar to Nature dataset [14]. The camera trajec-
tories were generated to simulate a robot moving through the garden, moving
on smooth trajectories, occasionally stopping and turning on spot, as shown
in Fig. 1. At each waypoint 10 views were rendered from a virtual camera rig,
which has pentagonal shape, with a stereo camera pair on each side as in Fig. 2.
Fine-grained details, such as grass and leaves, were generated on the fly during
rendering. Details on dataset generation can be found in [2].

3.2 Real Garden Data

The real dataset for the the 3DRMS challenge was collected in a test garden at
Wageningen University Research Campus, Netherlands, which was built specif-
ically for experimentation in robotic gardening. A validation sequence based on
test_around_garden scenario with 124 frames from the previous year dataset
was adopted for this year.

Calibrated Images. Image streams from four cameras (0, 1, 2, 3) were pro-
vided. Figure2 shows these are mounted in a pairwise setup, the pair 0-1 is
oriented to the front and the pair 2-3 to the right side of the robot vehicle.
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Fig. 1. Randomly generated trajectories for the test scene (unique color for each
sequence)

Resolution of the images is 752 x 480 (WVGA), cameras 0 and 2 are color while
cameras 1 and 3 are greyscale (but sharper). All images were undistorted with
the intrinsic camera parameters, calibration was performed with Kalibr tool-
box [7]. The camera poses were estimated with COLMAP [17] and manually
aligned to the coordinate system of the laser point cloud.

Fig. 2. Pentagonal camera rig mounted on the robot (left). First four cameras were
included in the real challenge data (right, green). (Color figure online)

Semantic Image Annotations. Manual pixel-wise ground truth (GT) anno-
tations (Fig.3) produced with semantic annotation tool [20] are provided for
frames from cameras 0 and 2.
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Synthetic

Real

Color image (undistorted) Semantic annotation

Fig. 3. Synthetic and real images of a garden from front camera mounted on a moving
robot.

Semantic Point Cloud. The geometry of the scene was acquired by Leica
ScanStation P15, which achieves accuracy of 3mm at 40m. Its native output
merged from 20 individual scans (Fig.4) was sub-sampled with a spatial filter
to achieve a minimal distance between two points of 10 mm, which becomes the
effective accuracy of the GT. For some dynamic parts, like leaves and branches,
the accuracy can be further reduced due to movement by the wind, etc.

Fig. 4. Point cloud of the real garden from laser scanner (height-colored).
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L

b) synthetic testing scene c) real validation scene

Fig. 5. GT semantic point cloud of virtual and real gardens with color-coded labels.

Semantic labels were assigned to the points with multiple 3D bounding boxes
drawn around individual components of the point cloud belonging to the garden
objects or terrain using the Rosemat? annotation tool [20]. Ultimately the point
cloud was split into segments corresponding to train and test sequences as shown
in Fig. 5.

4 Submitted Results

Three submission were received fort this challenge:

DTIS [3] (ONERA, Université Paris Saclay, France): In their pipeline, initial
SGM stereo results are fed to FuseNet [11], which jointly predicts a 2D semantic
segmentation map and refined depth. Those are fused using TSDF in a 3D
volumetric representation with colors and labels. Ultimately MC [15] extracts a
surface mesh with labels assigned by voting.

HAB [10] (Video Analytics Lab, Indian Institute of Science, Bangalore, India):
Their approach starts with ELAS stereo [8] producing a dense point cloud labeled

2 Rosbag Semantic Annotation Tool for Matlab. https://github.com/rtylecek/
rosemat.
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DTIS [3] HAB [10]

LAPSI [12) GT -

Fig. 6. Semantic and color meshes based on synthetic images submitted to the challenge
with GT point cloud for comparison.

with 2D semantic segmentation from DeepLabV3 [4]. The resulting point cloud
is denoised with class-specific filters and similarly mesh reconstruction is using
PSR [13] for flat surface classes and ball-pivoting for fine structures.

LAPSI12] (LaPSI, UFRGS, Brazil): Only the geometric mesh was generated, in
two variants: LAPSI360 using all 10 cameras and LAPSI4 using only 4 cameras.
We omit the latter variant from some comparisons as it was generally performing
just slightly worse than the former.

In addition to the three submitted results we have also compared to current
state-of-the-art methods in both reconstruction [17] and classification [1] tasks.

COLMAP [16] (8D Reconstruction baseline): A general-purpose Structure-from-
Motion (SfM) and Multi-View Stereo (MVS) pipeline with a graphical and
command-line interface. It offers a wide range of features for reconstruction of
ordered and unordered image collections.

SegNet [1] (Semantic baseline): For comparison with the 2D state-of-the-art a
SegNet architecture [1] is adapted for the given garden semantics.
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DTIS [3] LAPSI [12] GT

Fig. 7. Semantic and color meshes based on real images submitted to the challenge
with GT point cloud for comparison.

5 Evaluation

We have evaluated the quality of the 3D meshes based on the completeness of
the reconstruction, i.e., how much of the ground truth is covered, the accuracy
of the reconstruction, i.e., how accurately the 3D mesh models the scene, and
the semantic accuracy of the mesh, i.e., how close the semantics of the mesh are
to the ground truth. This section describes those metrics and how we measured
them.

5.1 3D Geometry Reconstruction: Accuracy and Completeness

We have followed the usual evaluation methodology described in [19]. In partic-
ular, accuracy is distance d (in m) such that 90% of the reconstruction is within
d of the ground truth mesh and completeness is the percent of points in the GT
point cloud that are within 5cm of the reconstruction.

The distances between the reconstruction and GT are calculated using a
point-to-mesh metric for completeness and vertex-to-point for accuracy. The
faces of submitted meshes were subdivided to have a same maximum edge length.
The difference between the evaluated results is shown in Fig.8, which all use
the same color scale for accuracy or completeness. Cold colors indicate well
reconstructed segments while hot colors indicate hallucinated surface (accuracy)
or missing parts (completeness).

The evaluation was limited to the space delimited by the bounding box of
the test area plus 2 m margin. Following [18] we also plot cumulative histograms
of distances in Fig. 9.

5.2 Semantic Classification Accuracy

The accuracy of semantic labels assigned to vertices or faces of the 3D model
(Figs.6 and 7) was evaluated by its projection to all test images with known
poses (denoted ‘3D’ below). Some submissions also directly included image seg-
mentation results (denoted ‘2D’), which were also compared.

Visual comparison of the results in a selected frame is given in Fig. 10. In the
error mask the red pixels indicate incorrectly classified pixels, grey were correct
and black were not evaluated. Quantitative results are presented by confusion
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HAB [10] DTIS [3]

COLMAP]15]

Accuracy Completeness

Fig. 8. Visual comparison of submitted geometry and test scene GT point cloud. Dis-
tances [0-1m)]: cold colors indicate well reconstructed segments, hot colors indicate
noisy surface (accuracy) or missing parts (completeness).

matrices for all images in the test set in Fig. 11, where semantic accuracy is the
percentage of correctly predicted pixels across all test images, and similarly in
Fig. 12 for real images.

5.3 Results and Discussion

The quantitative comparison in all performance categories is given in Table 1 for
synthetic data and in Table 2 for real validation data.

The baseline Structure-from-Motion method COLMAP [17] was outper-
formed by HAB submission by 3cm in terms of accuracy on synthetic data,
but at the cost of lower completeness (Table1). The COLMAP result could be
potentially improved by filtering out outliers seen in Fig. 8, still the class-specific
filters used in HAB would likely work for its advantage.

While DTIS submission was lacking good geometry, its joint depth and
semantic segmentation resulted in a slight boost of 1% in 2D semantic segmenta-
tion accuracy over the SegNet baseline [1], which did not have access to depths.
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Fig. 9. Quantitative comparison of geometry with cumulative histograms of distances
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test: accuracy (at 90%)

test: completeness (at 5cm)

between GT and submissions.

This however did not translate to 3D semantic accuracy, where the change of
representation to less accurate mesh resulted in 12% drop in performance. Fur-
ther inspection of the results shows that most object instances are correctly
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classified, and the 10-20% error appears near object boundaries or contours.

The real dataset proved to be more challenging Table2, where the deep
network employed by DTIS would apparently need more data for fine-tuning.
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HAB-3D [10] DTIS-3D [3] DTIS-2D [3] SegNet (2D baseline)

Prediction

Error mask

Fig. 10. Comparison of predicted semantic maps for a sample synthetic frame (above)
and GT semantics with color image, overlay and depth map (below). Error mask: red
marks incorrect pixels, grey correct. (Color figure online)

This probably allowed the classic MVS baseline to prevail in both accuracy and
completeness. Among the challenge participants, LAPSI was slightly better on
accuracy, but their mesh was otherwise very sparse as low completeness suggests,
probably resulting from overly conservative setting of the method.

In summary, best performers for synthetic data were HAB in 3D Geometry
category and DTIS in the semantic category. On real data DTIS also scored
better than the other submissions.

Table 1. Comparison of submitted results on synthetic test set.

Method 3D reconstruction Semantic

Accuracy | Completeness | Accuracy-2D | Accuracy-3D
DTIS [3] |0.122m | 66.2% 91.1% 79.0%
HAB [10] | 0.069m  74.0% 79.0%
LAPSI [12]|0.164m | 23.9%
Baseline 0.097m | 86.4% 90.2%
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Fig. 11. Evaluation of predicted semantic labels on test set. Confusion matrix: dark
on diagonal indicates good match of the prediction with GT labels. Semantic accuracy:
pixel-wise ratio of correct predictions over all test images.

DTIS[real]: label accuracy = 0.651

Grass 24 .03 .01 .01 .01 .04 27674382
Ground  [.10 .02 .01 .01 3676150

Pavement |.04 .27 .41 .05 .04 .18 260000
Hedge |.14 .02 .37 .17 .02 .08 .20 4649018
Topwar@ .08 .01 31 .02 .06 .02 3130849
Rose |.11 .02 .16 Bl.04 .08 .08 2799401
Obstacle |.06 .01 .02 .15 .03 .32 .32 .08 | 2497414
Tree .08 .01 .03 .05 | 9354965
Background  |.01 .01 .08 .02 .09 .09 40938802

G’%f ﬁ"l/,/:j”@g: %? ”@Z?‘?@Oé“‘fe?/e@ %04:9,0
" 6 ey

DTIS-2D: 65.1%

SegNet|[real]: label accuracy = 0.829

Grass .01 .02 .01
Ground .01 .01
Pavement .01 .01 .01
Hedge [.06 .02 .01 .24 .06 .03 .08 .03
Topiar}(’B .04 .03 .03 £l .01 .09 .01 .01
Rose |.11 .04 .18 .15 .09 .41 .02
Obstacle |.04 .01 .01 .01
Tree
Background .01

Gy Gy R, M., %0 B0 b 77 &
Re 0, e, o, Wy, O Oy Sy
s Uy %8/74’7@ 9 T f%%

27674382
3676150
260000
4649018
3130849
2799401
2497414
9354965
40938802

o

SegNet (2D baseline): 82.9 %

Fig. 12. Evaluation of predicted semantic labels on real set.
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Table 2. Comparison of submitted results on real validation set.

Method 3D reconstruction Semantic
Accuracy | Completeness | Accuracy-2D

DTIS [3] 0.25m 27.1% 65.1%

HAB [10]

LAPSI [12] 1 0.15m | 13.7%

Baseline 0.085m | 85.8% 82.9%

6 Conclusion

The workshop challenge competitors have shown that in some cases the joint
semantic and 3D information reasoning can improve results. The performance
gain was however rather marginal, suggesting that further optimization and
design changes are needed to fully unlock the potential that such approaches
offer and come up with methods giving overall balanced improvements. For this
purpose, we will continue to support new authors in evaluating their methods
on the garden dataset.
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