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Abstract. Pointing is a common gesture of human. Indeed, people tend
to involve pointing action in their daily activities using not only bare
hand but also with gloves or a kind of pointers like pens, rulers, long
sticks, batons, etc. Thus, in this article, the authors propose a new con-
cept of interaction that is centered by the natural gesture of human and
a method to detect it under various circumstances. Different from some
common approaches which rely on predefined skin color or markers, the
proposed method can segment and detect any pointer tip and allow mul-
tiple objects to be processed at a time. The method can run with the
average accuracy of 91.0%. In case of multiple users using different point-
ing objects, the accuracy is slightly reduced to 87.9%. The running time
is at most 17.14 ms for 9 objects being processed in parallel, and thus
can be applied for real time constraints.

Keywords: pointing, gesture, human computer interaction, natural in-
teraction.

1 Introduction

Human-Computer Interaction (HCI) provides natural ways of communication
between humans and computers. This means proposed methods should be as
similar to the way people communicate as possible. This motivates the devel-
opment of methods such as speech recognition (to understand human natural
language) [9], eye tracking (to understand human’s facial expression) [15], or
gesture and action recognition (to understand human body languages) [1], etc.

The popularity of pointing action in human’s daily communication inspires the
authors to propose a new idea of interaction method that based on the concept
of human’s pointing action. The interaction involves the pointing gesture which
has different meanings in different contexts.

This problem is a topic of human gesture recognition whose common approach
is to (1) analyze sequences of captured images, (2) detect hand and finger por-
tions, and (3) classify the sequences to some categories that have similar seman-
tic. The classification is based on machine learning method and does not require
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insight understanding of the gestures’ special properties which if being exploited,
lead to a simpler but efficient solution. Besides, the detection of hand and finger
is based on the assumption of predefined values such as skin color [3[10L2] or
trained markers [8/[T4]. Since people tend to use extra objects, or pointers (po-
lice’s signal light batons, presenters’ sticks, etc.) to point at something that they
cannot reach, these methods reduce the naturalness of the interaction (as they
require users to wear special markers or perform preliminary configuration) and
thus become inefficient [6].

As observed from human-human communication, the pointing actions consists
of 3 special characteristics: (1) the sharpness (level of protrusion of pointing tips),
(2) the first-appeared point (time instant that a tip is detected), and (3) the
farthest point (distance from a pointing tip to the frame edge that it appears.)
Exploiting the three characteristics, the authors propose a lightweight method
that supports all means of pointing interaction regardless of the kinds the objects
should be. Instead of using color and trying to detect the pointing tip in every
captured frame, the proposed method based on the special geometry shape of
pointing objects, i.e. protrusion, to detect the tips and tracking them through
frames series, and thus can be performed in real time.

2 Related Work

There are several approaches in HCI such as developing hardware devices like
keyboards, mice, cyber-gloves, magnetic tracking devices, etc., or implementing
environment-dependable systems using computer vision such as skin color, fin-
gertips or full-body detection, etc. In the scope of this paper, the authors focus
only on hand-finger based interactions which provides natural connection be-
tween human and computers [4[7[13[5]. In such systems, there are two kinds of
approach: sensing based and vision based. The vision-based approach requires
a single or multiple cameras, color or infrared, and color gloves or markers.
This approach’s accuracy, yet, has some drawbacks since it depends on lighting
condition and hard to be maintained for sudden changes of surrounding environ-
ment [5]. The sensing-based approach, which gives robust performance because
of using electronic devices, is limited in only touch interaction [5].

Hand-finger tracking is a noticeable topic of HCI. The goal of tracking al-
gorithms is to predict and estimate the object’s position. The approach re-
quires several constraints in order to achieve high performance [I7]. For color
segmentation-based methods, the performance depends on the color of wear-
ing gloves; for wave-let based methods, the computational cost is expensive and
cannot be used for real-time application; for contour based methods, it requires
restricted backgrounds to run; for infrared segmentation, the availability of ex-
pensive infrared cameras is needed; for correlation-based methods, it is necessary
to explicitly setup the stage beforehand; for blob-model based method, the con-
straint is about the maximum speed of hands’ movement [17].
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Fig. 1. Pointing tip detection method. (a) The pointing tip; (b) segmentation phase: a
foreground mask of the pointing object; (¢) pointing object contour; (d) the convex hull
of the object contour with points passed through protrusion level k; (e) the farthest
point among points in convex hull; (f): the pointing tip is detected.

3 Proposed Methods

Pointing action is popular in human’s activities because it helps to identify ob-
jects, get audience’s focus, or within different contexts, to select things, direct
ways, emphasize, etc. To overcome the limitation of other methods that based
on assumptions of skin colors, hand shapes or markers, this article detects point-
ing actions based on the pointing objects’ silhouettes, level of protrusion, and
distance to image frame’s boundary. As observed, the desired points are the
farthest points in an image frame because people tend to stretch their arms to
reach or point at something (it is unlikely to point at something by just slightly
extending the hands.) In addition, the points should satisfy the sharpness con-
straint as people usually choose pointing tips that stick out of an object and
have substantial level of protrusion like a stick, a pen tip, etc.

The proposed method is based on the special geometrical shapes of pointing
tips, which are protrusions of objects such as fingertips, pen tips, etc. The method
consists of two steps: segmentation (Figure [Ib) and identification (Figure [k, d,
e.) The pointing object is extracted from a captured image using background
subtraction method called Codebook [I1]. The pointing tip is detected from
the segmentation based on its level of protrusion [I6]. To reduce the cost of
computation, not all points in the object’s contour are chosen to computed but
only the points that reach into the image (computed from the frame margin it
had appeared) farther than a predefined threshold (Figure [Ik, d, e).

Instead of trying to detect the pointing tip through every frame which may
lead to low performance and error-prone, the authors propose to use the Kalman
filter [I8] to calculate the optimal coordinates of the detected point based on
previous results.

3.1 Pointing Objects Segmentation

The authors use background subtraction to extract pointing objects from the
other image parts which plays as a stable background. However, as the back-
ground is not exactly a constant image but contains two parts: small static



358 H.-A. Le et al.

environmental regions and a screen portions which are changed when users trig-
ger an event. On this manner, the background subtraction is carried out not only
at the beginning but also right after an event is generated by users to re-train
the background model. It should be noticed that the system does not need to
continuously update the background but only when the system accepts an event
and have the visual content changed.

Capable for both illumination change and moving-background training, the
authors propose to use the Codebook algorithm [IT]. When re-training the back-
ground, some portion of the new background may be occluded by a user’s point-
ing object. To solve this issue, the authors correct the occluded area in the
background by applying the homographic transform on the current screen con-
tent and mapping the corresponding region into the background.

The background subtraction phase runs through the following steps

— Periodically study a model of the background. During background learning,
if a codeword is not accessed for a period of time, it is deleted and replaced
by nonstale, i.e. active entries.

— Obtain foreground objects by using the learned model to segment it out of
the background.

— Periodically clean out stale codebook entries and update the learned back-
ground pixels after a period of time.

3.2 Pointing Tip Detection

The purpose of this section is to identify the hot spot of each pointing object
detected from previous phase and the location where users are pointing at. For
each pointing object, the tip detection runs through 4 consecutive steps:

— Firsly, because a hot spot can only occur at the boundary an object the
authors have the contour of each pointing object extracted.

— The set of points that forms the convex hull of the contour is then computed.
Since the pointing tip is usually the part that sticks out of an object, this
set is the candidate points for the desired hot spot.

— For each point in the candidate set, the authors compute the level of pro-
trusion and only those that pass a predefined threshold can be present.

— Finally, among the candidate, the hot spot is selected to be the farthest point
computed from the frame edge that it first appears.

— In order to improve the accuracy, the authors apply the Kalman filter that
uses the previous knowledge of the hot spot to correct the new detected point
from noises that may appear.

Contour Extraction. Let M be the foreground mask obtained from any ar-
bitrary frame after the segmentation phase, B € N? be a blob or a connected
component in M and C = 3(B) be the contour of the blob B,

C=p(B)=B-(BoK),
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where B& K is the erosion of B and a 3 x 3 matrix K, which consists of all points
p such that K translated by p, is contained in B, i.e. B& K = {p|(K), C B}. The
result of each pointing object in Figure[Ib is shown corresponding in Figure [Ik.

Convex Hull Computation. As the matter of fact, it is possible to find
the pointing tip right after the object contour is extracted. However, since the
contour may become zigzag due to noises from background subtraction Figure[Zh,
b, or complicated Figure Bk because of the shape of the pointing object used,
the convex hulls ‘H of the countour C, H C C is computed.

Since the pointing tip is a protrusion part on an object’s contour, the convex
hull computation does not leave out the correct tip (see Figure [Id, e and the
third column of Figure [2) but only narrowed down the number of points to be
checked. Thus, the step helps to increase the system performance.

Fig. 2. Convex Hull

Level of Protrusion. Based on the sharpness level k of each point, the can-
didate set is filtered to those that are sharper than a threshold level k.. The
sharpness level k of a point is computed based on the angle it makes with 2
arbitrary points in the neighborhood:

ki=pips —papy
For each point P; € H in the convex hull of the contour, let P;_j, Py € C

be any two points on the contour, may or may not be in the convex hull. The
authors have p~ and pT are 2 vectors defined by:

- - V=P P + + . PP,
p :(plapz):Pi—kPu and p :(p17p2):PiPi+k:

The threshold level kyp,- is different for each kind of objects such as the threshold
level of a pen-tip is smaller than that of a finger, etc.

Pointing Tip Detection. Let S¢ be the candidate set narrowed down from the
convex hull of the contour, i.e. So = {P;|P; € H,k; > kinr}. Since people tend
to stretch their arm to reach for the pointed objects, the pointing tips should
be the farthest points among all the candidates. By farthest, the authors mean
that the distant d of each candidate point is computed from the frame edge that
the object first appears. For instance, candidate points on the object in the first
row of Figurdl] are measured to the left boundary whereas candidate points on
the second and third row are measured to the bottom boundary.
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Correction. Because of sudden changes in environmental illumination or oc-
clusions, noises and errors may happen during the process. To bypass the wrong
detection, the authors propose using a method to correct the detection result. By
observation, within a short period of 10 — 500ms users usually have the pointing
objects move in a stable direction. Thus, the Kalman Filter is selected to do
the correction step. Using the Filter, the authors track the pointing tip from
the first time it appears in the viewport, and in every step, the optimal point
is computed from both the measurement, i.e. the newly detected result, and the
result from previous steps.

4 Experiments and Results

4.1 Dataset Description

The test scenarios contain sets of video clips which are divided into 3 groups A,
B, and C:

— Group A includes rigid objects whose shapes do not change much: bare hand
(A1), finger (A2), gloved hand (A3), gloved finger (A4), and pen (A5.)

— Group B includes deformable objects whose shapes change significantly: de-
formable hand (B1), deformable finger (B2), glasses (B3), blinking semi-
transparent stick (B4), and slider (B5.)

— Group C includes multiple hands (C1), multiple pens (C2), blinking semi-
transparent stick and slider (C3), 3 users with different pointing objects
(C4), and 5 users with different pointing objects (C5.)

The test video clips are recorded with 25frames/ms; each is 1000-frames long
of 3 different resolutions 320 x 240, 640 x 480, and 1280 x 960 pixels. The point-
ing objects are chosen so that their colors are visually recognizable from the
background. In addition, the test cases vary from single object to multiple ones
to check the performance and accuracy under different conditions. Besides, the
objects’ colors and shapes are also picked randomly to guarantee that there is
no predefined color or shape used in the test scenarios.

4.2 System Accuracy

The system accuracy, is calculated from the number of frames (out of 1000)
giving correct results (Figure Bh.) By experiment, the accuracy over group 1 is
1.4% greater than group 2 and the accuracy over group 2 is 3.9% greater than
group 3. It means that, among the 3 groups of test cases, rigid objects are the
easiest one to processed while multiple objects used by several users are, on the
other hand, the most difficult ones. The difference, however, is not significant as
the complexity over the test scenarios increases. Therefore, the system is able
to produce high accuracy (with mean of 91.0%) which is stable over several test
cases (with standard deviation of 4.4%) and can be applied in real life situations.



Realtime Pointing Gesture Recognition and Applications 361

4.3 System Performance

System performance is measured using the total running time of the test cases
classified by the number of objects: 1, 3, 6, and 9 (Figure Bb). As the frames’
resolutions increase, the running times also increase with the mean duration
of 3.03ms over the first 2 resolutions, and 12.4ms over the last 2 resolutions.
It means that the growth of frames’ resolution increases the running time. Be-
sides, the mean running times for the 3 resolutions (over the 4 test cases) are
respectively 0.93ms, 3.96ms, and 16.39ms. Therefore the processing time is not
affected by the screen’s resolution but by the number of objects.

ing Time (ms)
8

Accuracy (%)

1 object 3objects | 6objects | 9 objects
m320x240 0.66 0.73 1.05 128

]

Al' T A2 T AB A;l ] A5 Bl' B2 5737 T VBA VBS 61 Q2 3| @|c
W% Incorrect 84 6.1 86 30|76 |58 162|65 83|42 140[117(158 4.1 147‘ sl 344 . 423 4.67
=% Correct 916 93.9 914 |97.0(92.4 942 838|935 917|958 860|883 842959853 W1280x960) 15.73 ] 16.83 17.14

() (®)

Fig. 3. Accuracy (a) and system performance (b) of different pointing objects

As the number of pointing objects increases, the processing time also increases.
However, the two growth levels do not depend on each other because the pro-
cessing phase for each object contains similar steps (background subtraction and
contour extraction,) which are processed at the same time. Therefore, the pro-
cessing time only increase by an insignificant amount as the number of objects
increases.

On the other hand, the running time depends greatly on the frame resolution
as the time is proportional to the number of pixels in a frame, i.e. when the
resolution is doubled, the running time increases around 4 times. For the test
scenario with the highest resolution, it requires 17.14ms at most. Hence, the
system still satisfies real-time performance criteria in experiment’s worst cases.

4.4 Discussion

Figure[d shows some experiments of bare hands and fingers with their silhouettes.
In these experiments, the hands and fingers, are kept rigid as they are moving.
It appears that the detected regions match the one the users pointing to.

As an example of deformable objects, the authors use glasses and change
their shapes so that the protrusive and farthest points are changed over time
(Figure Bl). Without using any tracking methods, the system detects new points
with higher level of protrusion and lose focus on the original ones, which should
be continued to be detected.
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Fig. 5. Deformable glasses’ silhouettes with detected points (red circle)

Another case that leads to system inaccuracy is shown in Figure [ that de-
scribes the situation of two objects occluding each other. If the filter is not
present, the overlapped point is lost after the occlusion; otherwise, the covered
regions are remembered and continued to be tracked.

S = S

— - //

Fig. 6. Occlusion in multiple objects: fingers and rulers

5 Application

The Smart Interactive Map (SIM) [12] transforms normal physical map into a
system that can understand users’ pointing gestures and offer them information
such as the best route, tourist attraction, restaurant, etc (Figure[7l) The system
consists of several map stations at different locations in a certain area, each
which connects to one processor, for parallel processing. It is designed to serve
one user at a time to avoid occlusion caused by multiple users. Instead, two
hands of a user are the cause of occlusion, but the frequency of this is low.

Although the system does not serve groups of users, it still shows the parallel
processing property of the authors’ proposed method. Beside the parallel pro-
cessing property of the system, understanding pointing gesture of users’ fingers
or protrusive objects is the most important part of this system. By setting up
SIM, the authors show two strong properties of the proposed method that are
parallel processing performance and natural way in interaction.
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Fig. 7. Smart Interactive Map

6 Conclusion and Future Work

This paper introduces a new kind of interaction method: pointing gesture, to
provide a high level of flexibility and naturalness, as it is commonly used. The
proposed method can overcome existing obstacles of using predefined colors and
shapes. It allows people to use any arbitrary objects to interact with the sys-
tems without learning their special features since the method depends on the
protrusive regions of the objects.

By experiment, the system takes 17.14ms with an accuracy of 91.0% to process
9 objects in parallel. The error is due to lost tracking when the objects become
non-rigid or when occlusion happens. As people tend to move pointing objects
slowly and linearly in short periods of time, the author propose to use Kalman
filter to further improve the method’s accuracy.

This method can be used as a low cost replacement for current interactive
systems. For example, the method can be applied to build (1) interactive map
guiding systems in large areas, such as campuses, amusement parks, shopping
malls, etc; (2) teaching or presenting systems, where users have to use point-
ing gestures most of the time; (3) entertainment systems which requires high
flexibility while operating.
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